
W4.0
Device Drivers and System Services Manual

for Blackfin® Processors

Revision 1.0, February 2005

Part Number
82-000430-01

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106 a

Copyright Information
©2005 Analog Devices, Inc., ALL RIGHTS RESERVED. This document
may not be reproduced in any form without prior, express written consent
from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, Blackfin, the Blackfin logo, EZ-KIT Lite,
SHARC, TigerSHARC, and VisualDSP++ are registered trademarks of
Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

Device Drivers and System Services Manual for Blackfin Processors iii

CONTENTS

PREFACE

Purpose of This Manual .. xvii

Intended Audience .. xvii

Manual Contents Description .. xviii

Technical or Customer Support .. xix

Product Information .. xix

MyAnalog.com .. xx

Processor Product Information ... xx

Related Documents .. xxi

Online Technical Documentation ... xxi

Accessing Documentation From VisualDSP++ xxii

Accessing Documentation From Windows xxii

Accessing Documentation From the Web xxiii

Printed Manuals .. xxiii

VisualDSP++ Documentation Set xxiv

Hardware Tools Manuals .. xxiv

Processor Manuals .. xxiv

Data Sheets .. xxiv

Notation Conventions ... xxv

CONTENTS

iv Device Drivers and System Services Manual for Blackfin Processors

INTRODUCTION

System Services Overview ... 1-2

Application Interface ... 1-5

Dependencies .. 1-6

Initialization ... 1-7

Termination .. 1-9

System Services Directory and File Structure 1-10

Accessing the System Services API 1-10

Linking in the System Services Library 1-12

Rebuilding the System Services Library 1-13

Examples .. 1-15

Device Driver Overview .. 1-15

Application Interface ... 1-16

Device Driver Architecture .. 1-17

Interaction with System Services 1-18

Initialization ... 1-19

Termination .. 1-19

Device Driver Directory and File Structure 1-20

Accessing the Device Driver API 1-20

Linking in the Device Driver Library 1-22

Rebuilding the Device Driver Library 1-23

Examples .. 1-25

CONTENTS

Device Drivers and System Services Manual for Blackfin Processors v

INTERRUPT MANAGER

Introduction ... 2-2

Initialization ... 2-4

Termination .. 2-5

Core Event Controller Functions ... 2-6

adi_int_CECHook() .. 2-6

adi_int_CECUnhook() .. 2-8

Interrupt Handlers .. 2-8

System Interrupt Controller Functions .. 2-9

adi_int_SICDisable() ... 2-10

adi_int_SICEnable() .. 2-10

adi_int_SICGetIVG() .. 2-10

adi_int_SICInterruptAsserted() ... 2-11

adi_int_SICSetIVG() ... 2-11

adi_int_SICWakeup() .. 2-11

Protecting Critical Regions .. 2-12

Modifying IMASK .. 2-14

Examples .. 2-15

File Structure .. 2-16

Interrupt Manager API Reference .. 2-17

Notation Conventions ... 2-17

adi_int_Init ... 2-18

adi_int_Terminate ... 2-19

adi_int_CECHook .. 2-20

CONTENTS

vi Device Drivers and System Services Manual for Blackfin Processors

adi_int_CECUnhook .. 2-22

adi_int_ClearIMaskBits .. 2-24

adi_int_EnterCriticalRegion .. 2-26

adi_int_ExitCriticalRegion .. 2-28

adi_int_SICDisable ... 2-29

adi_int_SICEnable .. 2-30

adi_int_SICGetIVG .. 2-31

adi_int_SICInterruptAsserted .. 2-32

 adi_int_SICSetIVG .. 2-33

adi_int_SetIMaskBits .. 2-34

adi_int_SICWakeup .. 2-36

POWER MANAGEMENT MODULE

Introduction ... 3-2

PM Module Operation – Getting Started 3-3

Power Management API Reference .. 3-6

Notation Conventions ... 3-6

adi_pwr_AdjustFreq .. 3-7

adi_pwr_Control .. 3-9

adi_pwr_GetConfigSize .. 3-11

adi_pwr_GetFreq .. 3-12

adi_pwr_GetPowerMode ... 3-13

adi_pwr_GetPowerSaving .. 3-13

adi_pwr_Init ... 3-14

adi_pwr_LoadConfig .. 3-18

CONTENTS

Device Drivers and System Services Manual for Blackfin Processors vii

adi_pwr_Reset ... 3-19

adi_pwr_SaveConfig .. 3-20

adi_pwr_SetFreq ... 3-21

adi_pwr_SetMaxFreqForVolt ... 3-23

adi_pwr_SetPowerMode .. 3-24

adi_pwr_SetVoltageRegulator .. 3-26

Public Data Types and Enumerations ... 3-30

ADI_PWR_COMMAND ... 3-31

ADI_PWR_COMMAND_PAIR ... 3-35

ADI_PWR_CSEL ... 3-35

ADI_PWR_DF ... 3-36

ADI_PWR_EZKIT ... 3-37

ADI_PWR_INPUT_DELAY ... 3-37

ADI_PWR_OUTPUT_DELAY ... 3-37

ADI_PWR_MODE .. 3-38

ADI_PWR_PACKAGE_KIND ... 3-39

ADI_PWR_PCC133_COMPLIANCE 3-40

ADI_PWR_PROC_KIND .. 3-41

ADI_PWR_RESULT .. 3-42

ADI_PWR_SSEL .. 3-44

ADI_PWR_VDDEXT .. 3-45

ADI_PWR_VLEV ... 3-46

ADI_PWR_VR_CANWE ... 3-47

ADI_PWR_VR_CKELOW ... 3-48

CONTENTS

viii Device Drivers and System Services Manual for Blackfin Processors

ADI_PWR_VR_CLKBUFOE ... 3-49

ADI_PWR_VR_FREQ ... 3-50

ADI_PWR_VR_GAIN ... 3-50

ADI_PWR_VR_PHYWE ... 3-50

ADI_PWR_VR_WAKE .. 3-51

PM Module Macros .. 3-51

EXTERNAL BUS INTERFACE UNIT MODULE

Introduction ... 4-2

Using the EBIU Module ... 4-3

EBIU API Reference ... 4-6

Notation Conventions ... 4-6

adi_ebiu_AdjustSDRAM ... 4-7

adi_ebiu_Control .. 4-8

adi_ebiu_GetConfigSize .. 4-11

adi_ebiu_Init .. 4-12

adi_ebiu_LoadConfig .. 4-16

adi_ebiu_SaveConfig .. 4-17

Public Data Types and Enumerations .. 4-18

ADI_EBIU_RESULT ... 4-19

ADI_EBIU_SDRAM_BANK_VALUE 4-21

ADI_EBIU_TIME .. 4-22

ADI_EBIU_TIMING_VALUE ... 4-23

Setting Control Values in the EBIU Module 4-24

ADI_EBIU_COMMAND .. 4-24

CONTENTS

Device Drivers and System Services Manual for Blackfin Processors ix

ADI_EBIU_COMMAND_PAIR ... 4-28

Command Value Enumerations ... 4-28

ADI_EBIU_SDRAM_EZKIT ... 4-28

ADI_EBIU_SDRAM_ENABLE .. 4-28

ADI_EBIU_SDRAM_BANK_SIZE 4-29

ADI_EBIU_SDRAM_BANK_COL_WIDTH 4-29

ADI_EBIU_SDRAM_MODULE_TYPE 4-30

ADI_EBIU_CMD_SET_SDRAM_SCTLE 4-31

ADI_EBIU_SDRAM_EMREN ... 4-31

ADI_EBIU_SDRAM_PASR ... 4-32

ADI_EBIU_SDRAM_TCSR ... 4-32

ADI_EBIU_SDRAM_SRFS .. 4-33

ADI_EBIU_SDRAM_EBUFE .. 4-33

ADI_EBIU_SDRAM_PUPSD .. 4-33

ADI_EBIU_SDRAM_PSM ... 4-34

ADI_EBIU_SDRAM_FBBRW .. 4-34

ADI_EBIU_SDRAM_CDDBG .. 4-35

DEFERRED CALLBACK MANAGER

Introduction ... 5-2

Using the Deferred Callback Manager ... 5-3

Interoperability With an RTOS ... 5-7

adi_dcb_Forward ... 5-8

adi_dcb_RegisterISR ... 5-9

Handling Critical Regions within Callbacks 5-10

CONTENTS

x Device Drivers and System Services Manual for Blackfin Processors

DCB Manager API Reference .. 5-10

Notation Conventions ... 5-10

adi_dcb_Close .. 5-12

adi_dcb_Control ... 5-13

adi_dcb_Init ... 5-16

adi_dcb_Open .. 5-18

adi_dcb_Post .. 5-20

adi_dcb_Remove ... 5-22

adi_dcb_Terminate ... 5-23

Public Data Types and Macros .. 5-24

ADI_DCB_CALLBACK_FN .. 5-24

ADI_DCB_COMMAND_PAIR ... 5-25

ADI_DCB_COMMAND ... 5-26

ADI_DCB_ENTRY_HDR ... 5-26

ADI_DCB_RESULT .. 5-27

DMA MANAGER

Introduction ... 6-1

Theory of Operation .. 6-2

Overview .. 6-3

Initialization ... 6-3

Termination .. 6-5

Memory DMA and Peripheral DMA 6-5

Controlling Memory Streams .. 6-6

Opening Memory Streams .. 6-6

Device Drivers and System Services Manual for Blackfin Processors xi

Memory Transfers ... 6-7

One-Dimensional Transfers (Linear Transfers) 6-8

Two-Dimensional Transfers ... 6-9

Closing Memory Streams .. 6-10

Controlling DMA Channels .. 6-10

Opening DMA Channels .. 6-10

Operating Modes .. 6-11

Configuring a DMA Channel .. 6-21

Closing a DMA Channel ... 6-21

Transfer Completions .. 6-22

Polling .. 6-22

Callbacks .. 6-22

Memory Stream Callbacks ... 6-23

Circular Transfer Callbacks .. 6-23

Descriptor Callbacks ... 6-24

Descriptor Based Submodes ... 6-24

Loopback Submode ... 6-24

Streaming Submode .. 6-25

DMA Channel to Peripheral Mapping 6-26

Sensing a Mapping .. 6-27

Setting a Mapping ... 6-27

Interrupts .. 6-27

Hooking Interrupts ... 6-28

Unhooking Interrupts ... 6-28

xii Device Drivers and System Services Manual for Blackfin Processors

Two-Dimensional DMA .. 6-29

DMA Manager API Reference ... 6-32

Notation Conventions ... 6-32

adi_dma_Buffer .. 6-34

adi_dma_Control .. 6-36

adi_dma_Close ... 6-39

adi_dma_GetMapping .. 6-40

adi_dma_Init .. 6-41

adi_dma_MemoryClose .. 6-42

adi_dma_MemoryCopy .. 6-43

adi_dma_MemoryCopy2D .. 6-45

adi_dma_MemoryOpen .. 6-47

adi_dma_Open ... 6-49

adi_dma_Queue ... 6-51

adi_dma_SetMapping ... 6-52

adi_dma_Terminate .. 6-53

Public Data Structures, Enumerations and Macros 6-53

Data Types .. 6-54

ADI_DMA_CHANNEL_HANDLE 6-54

ADI_DMA_DESCRIPTOR_UNION /
ADI_DMA_DESCRIPTOR_HANDLE 6-54

ADI_DMA_STREAM_HANDLE 6-55

Data Structures ... 6-55

ADI_DMA_2D_TRANSFER ... 6-56

ADI_DMA_CONFIG_REG .. 6-56

Device Drivers and System Services Manual for Blackfin Processors xiii

ADI_DMA_DESCRIPTOR_ARRAY 6-56

ADI_DMA_DESCRIPTOR_LARGE 6-57

ADI_DMA_DESCRIPTOR_SMALL 6-57

General Enumerations ... 6-57

ADI_DMA_CHANNEL_ID .. 6-58

ADI_DMA_EVENT ... 6-58

ADI_DMA_MODE ... 6-58

ADI_DMA_PMAP ... 6-59

ADI_DMA_RESULT ... 6-59

ADI_DMA_STREAM_ID .. 6-59

ADI_DMA_CONFIG_REG Field Values 6-61

ADI_DMA_DMA2D ... 6-61

ADI_DMA_DI_EN .. 6-61

ADI_DMA_DI_SEL ... 6-61

ADI_DMA_EN .. 6-61

ADI_DMA_WDSIZE ... 6-61

ADI_DMA_WNR .. 6-62

DMA Commands .. 6-62

DEVICE DRIVER MANAGER

Device Driver Model Overview ... 7-3

Using the Device Manager .. 7-5

Device Manager Overview ... 7-6

Theory of Operation ... 7-6

Data ... 7-7

xiv Device Drivers and System Services Manual for Blackfin Processors

Initializing the Device Manager .. 7-8

Termination ... 7-9

Opening a Device ... 7-9

Configuring a Device .. 7-10

Dataflow Method ... 7-11

Enabling Dataflow .. 7-14

Providing Buffers to a Device .. 7-14

Closing a Device ... 7-16

Callbacks .. 7-16

Initialization Sequence .. 7-16

Stackable Drivers .. 7-17

Device Manager Design .. 7-18

Device Manager API Description ... 7-18

Memory Usage Macros ... 7-19

Handles .. 7-20

Dataflow Enumerations .. 7-20

Command IDs ... 7-20

Callback Events .. 7-21

Return Codes ... 7-21

Circular Buffer Callback Options 7-21

Buffer Data Types ... 7-21

Physical Driver Entry Point .. 7-22

API Function Definitions ... 7-22

Device Manager Code ... 7-23

Device Drivers and System Services Manual for Blackfin Processors xv

Data Structures ... 7-23

Static Data .. 7-23

Static Function Declarations .. 7-23

API Functional Description ... 7-24

adi_dev_Init ... 7-24

adi_dev_Open .. 7-24

adi_dev_Close ... 7-25

adi_dev_Read ... 7-26

adi_dev_Write ... 7-27

adi_dev_Control ... 7-27

Static Functions .. 7-31

PDDCallback ... 7-31

DMACallback ... 7-31

PrepareBufferList .. 7-32

SetDataflow .. 7-34

Physical Driver Design .. 7-35

Physical Driver Design Overview ... 7-35

Physical Device Driver API Description 7-37

Physical Driver Include File (“xxx.h”) 7-38

Extensible Definitions ... 7-38

ADI_DEV_PDD_ENTRY_POINT 7-40

Physical Driver Source (“xxx.c”) ... 7-40

adi_pdd_Open .. 7-41

adi_pdd_Control .. 7-42

xvi Device Drivers and System Services Manual for Blackfin Processors

adi_pdd_Read .. 7-44

adi_pdd_Write ... 7-45

adi_pdd_Close ... 7-46

Device Manager API Reference ... 7-47

Notation Conventions ... 7-47

adi_dev_Close ... 7-48

adi_dev_Control ... 7-49

adi_dev_Init ... 7-50

adi_dev_Open .. 7-52

adi_dev_Read ... 7-54

adi_dev_Terminate .. 7-55

adi_dev_Write .. 7-56

Physical Driver API Reference ... 7-57

Notation Conventions ... 7-57

adi_pdd_Close .. 7-58

adi_pdd_Control .. 7-59

adi_pdd_Open .. 7-60

adi_pdd_Read ... 7-62

adi_pdd_Write .. 7-63

Examples .. 7-64

INDEX

Device Drivers and System Services Manual for Blackfin Processors xvii

PREFACE

Thank you for using Analog Devices, Inc. development software for
Analog Devices embedded processors.

Purpose of This Manual
The Device Drivers and System Services Manual for Blackfin Processors con-
tains information about the Analog Devices Device Driver Model and
System Services library suite. Included are architectural descriptions of the
device driver design, and each of the System Service components. Also
included is a description of the APIs into each library.

Intended Audience
The primary audience for this manual is a programmer who is familiar
with Analog Devices processors. This manual assumes that the audience
has a working knowledge of the appropriate processor architecture and
instruction set. Programmers who are unfamiliar with Analog Devices
processors can use this manual, but should supplement it with other texts
(such as the appropriate hardware reference and programming reference
manuals) that describe your target architecture.

Manual Contents Description

xviii Device Drivers and System Services Manual for Blackfin Processors

Manual Contents Description
This manual contains:

• Chapter 1, “Introduction”
provides an overview of System Services and Device Drivers

• Chapter 2, “Interrupt Manager”
describes the System Interrupt Controller (SIC) Manager that sup-
ports the general-purpose interrupt events

• Chapter 3, “Power Management Module”
describes the Power Management module that supports Dynamic
Power Management of Blackfin processors

• Chapter 4, “External Bus Interface Unit Module”
describes the External Bus Interface Unit (EBIU) module that is
used to enable the Power Management module to manage the
SDRAM Controller operation

• Chapter 5, “Deferred Callback Manager”
describes the Deferred Callback Manager that is used by the appli-
cation developer to effectively execute function calls

• Chapter 6, “DMA Manager”
describes Direct Memory Access (DMA) Manager API

• Chapter 7, “Device Driver Manager”
describes the device driver model used to control devices, both
internal and external, to ADI processors

Device Drivers and System Services Manual for Blackfin Processors xix

Preface

Technical or Customer Support
You can reach Analog Devices, Inc. Customer Support in the following
ways:

• Visit the Embedded Processing and DSP products Web site at
http://www.analog.com/processors/technicalSupport

• E-mail tools questions to
dsptools.support@analog.com

• E-mail processor questions to
dsp.support@analog.com

• Phone questions to 1-800-ANALOGD

• Contact your Analog Devices, Inc. local sales office or authorized
distributor

• Send questions by mail to:

Analog Devices, Inc.
One Technology Way
P.O. Box 9106
Norwood, MA 02062-9106
USA

Product Information
You can obtain product information from the Analog Devices Web site,
from the product CD-ROM, or from the printed publications (manuals).

Analog Devices is online at www.analog.com. Our Web site provides infor-
mation about a broad range of products—analog integrated circuits,
amplifiers, converters, and digital signal processors.

Product Information

xx Device Drivers and System Services Manual for Blackfin Processors

MyAnalog.com
MyAnalog.com is a free feature of the Analog Devices Web site that allows
customization of a Web page to display only the latest information on
products you are interested in. You can also choose to receive weekly
E-mail notification containing updates to the Web pages that meet your
interests. MyAnalog.com provides access to books, application notes, data
sheets, code examples, and more.

Registration:

Visit www.myanalog.com to sign up. Click Register to use MyAnalog.com.
Registration takes about five minutes and serves as means for you to select
the information you want to receive.

If you are already a registered user, just log on. Your user name is your
E-mail address.

Processor Product Information
For information on embedded processors and DSPs, visit our Web site at
www.analog.com/processors, which provides access to technical publica-
tions, data sheets, application notes, product overviews, and product
announcements.

Device Drivers and System Services Manual for Blackfin Processors xxi

Preface

You may also obtain additional information about Analog Devices and its
products in any of the following ways.

• E-mail questions or requests for information to
dsp.support@analog.com

• Fax questions or requests for information to
1-781-461-3010 (North America)
089/76 903-557 (Europe)

• Access the FTP Web site at
ftp ftp.analog.com or ftp 137.71.23.21
ftp://ftp.analog.com

Related Documents
For software/tools information, refer to VisualDSP++ user’s documenta-
tion available online and in printed forms.

For hardware information, refer to your processors’s hardware reference,
programming reference, or data sheet. All documentation is available
online. Most documentation is available in printed form.

Visit the Technical Library Web site to access all processor and tools man-
uals and data sheets:

http://www.analog.com/processors/resources/technicalLibrary

Online Technical Documentation
Online documentation includes the VisualDSP++ Help system, software
tools manuals, hardware tools manuals, processor manuals, Dinkum
Abridged C++ library, and Flexible License Manager (FlexLM) network
license manager software documentation. You can easily search across the

Product Information

xxii Device Drivers and System Services Manual for Blackfin Processors

entire VisualDSP++ documentation set for any topic of interest using the
Search function of VisualDSP++ Help system. For easy printing, supple-
mentary .PDF files of most manuals are also provided.

Each documentation file type is described as follows.

Access the online documentation from the VisualDSP++ environment,
Windows® Explorer, or the Analog Devices Web site.

Accessing Documentation From VisualDSP++

From the VisualDSP++ environment:

• Access VisualDSP++ online Help from the Help menu’s Contents,
Search, and Index commands.

• Open online Help from context-sensitive user interface items (tool-
bar buttons, menu commands, and windows).

Accessing Documentation From Windows

In addition to any shortcuts you may have constructed, there are many
ways to open VisualDSP++ online Help or the supplementary documenta-
tion from Windows.

File Description

.CHM Help system files and manuals in Help format

.HTM or

.HTML
Dinkum Abridged C++ library and FlexLM network license manager software
documentation. Viewing and printing the .HTML files requires a browser, such as
Internet Explorer 4.0 (or higher).

.PDF VisualDSP++ and processor manuals in Portable Documentation Format (PDF).
Viewing and printing the .PDF files requires a PDF reader, such as Adobe Acrobat
Reader (4.0 or higher).

Device Drivers and System Services Manual for Blackfin Processors xxiii

Preface

Help system files (.CHM) are located in the Help folder of VisualDSP++
environment. The .PDF files are located in the Docs folder of your
VisualDSP++ installation CD-ROM. The Docs folder also contains the
Dinkum Abridged C++ library and the FlexLM network license manager
software documentation.

Using Windows Explorer

• Double-click the vdsp-help.chm file, which is the master Help sys-
tem, to access all the other .CHM files.

• Open your VisualDSP++ installation CD-ROM and double-click
any file that is part of the VisualDSP++ documentation set.

Using the Windows Start Button

• Access VisualDSP++ online Help by clicking the Start button and
choosing Programs, Analog Devices, VisualDSP++, and
VisualDSP++ Documentation.

Accessing Documentation From the Web

Download manuals in PDF format at the following Web site:
http://www.analog.com/processors/resources/technicalLibrary/manuals

Select a processor family and book title. Download archive (.ZIP) files, one
for each manual. Use any archive management software, such as WinZip,
to decompress downloaded files.

Printed Manuals
For general questions regarding literature ordering, call the Literature
Center at 1-800-ANALOGD (1-800-262-5643) and follow the prompts.

Product Information

xxiv Device Drivers and System Services Manual for Blackfin Processors

VisualDSP++ Documentation Set

To purchase VisualDSP++ manuals, call 1-603-883-2430. The manuals
may be purchased only as a kit.

If you do not have an account with Analog Devices, you are referred to
Analog Devices distributors. For information on our distributors, log onto
http://www.analog.com/salesdir/continent.asp.

Hardware Tools Manuals

To purchase EZ-KIT Lite™ and In-Circuit Emulator (ICE) manuals, call
1-603-883-2430. The manuals may be ordered by title or by product
number located on the back cover of each manual.

Processor Manuals

Hardware reference and instruction set reference manuals may be ordered
through the Literature Center at 1-800-ANALOGD (1-800-262-5643),
or downloaded from the Analog Devices Web site. Manuals may be
ordered by title or by product number located on the back cover of each
manual.

Data Sheets

All data sheets (preliminary and production) may be downloaded from the
Analog Devices Web site. Only production (final) data sheets (Rev. 0, A,
B, C, and so on) can be obtained from the Literature Center at
1-800-ANALOGD (1-800-262-5643); they also can be downloaded from
the Web site.

To have a data sheet faxed to you, call the Analog Devices Faxback System
at 1-800-446-6212. Follow the prompts and a list of data sheet code
numbers will be faxed to you. If the data sheet you want is not listed,
check for it on the Web site.

Device Drivers and System Services Manual for Blackfin Processors xxv

Preface

Notation Conventions
Text conventions used in this manual are identified and described as
follows.

Example Description

Close command
(File menu)

Titles in reference sections indicate the location of an item within the
VisualDSP++ environment’s menu system (for example, the Close
command appears on the File menu).

{this | that} Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or
that. One or the other is required.

[this | that] Optional items in syntax descriptions appear within brackets and
separated by vertical bars; read the example as an optional this or
that.

[this,…] Optional item lists in syntax descriptions appear within brackets
delimited by commas and terminated with an ellipse; read the example
as an optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

Note: For correct operation, ...
A Note provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this

symbol.

Caution: Incorrect device operation may result if ...
Caution: Device damage may result if ...
A Caution identifies conditions or inappropriate usage of the product
that could lead to undesirable results or product damage. In the online
version of this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ...
A Warning identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for devices
users. In the online version of this book, the word Warning appears
instead of this symbol.

Notation Conventions

xxvi Device Drivers and System Services Manual for Blackfin Processors

Additional conventions, which apply only to specific chapters, may
appear throughout this document.

Device Drivers and System Services Manual for Blackfin Processors 1-1

1 INTRODUCTION

This manual describes the System Services and Device Driver architecture
for Analog Devices processors.

The System Services form a collection of functions that are commonly
found in embedded systems. Each system service focuses on a specific set
of functionality such as Direct Memory Access (DMA), Power Manage-
ment (PM), Interrupt Control (IC), and so on. Collectively, the system
services provide a wealth of pre-built, optimized code that simplifies soft-
ware development for users, allowing them to get their Blackfin
processor-based designs to market more quickly.

The Device Driver model provides a simple, clean and familiar interface
into device drivers for Blackfin processors. The primary objective of the
device driver model is to create a concise, effective and easy to use inter-
face through which applications can communicate with device drivers.
Secondarily, the model and device manager software, significantly simpli-
fies the development of device drivers, making it very straightforward for
the development of new device drivers.

System Services Overview

1-2 Device Drivers and System Services Manual for Blackfin Processors

System Services Overview
The current revision of the System Services library consists of five services:

• Interrupt Control Service - The Interrupt Control service allows
the application to control and leverage the event and interrupt pro-
cessing of the processor more effectively. Specific functionality
allows the application to:

• Set and detect the mappings of the interrupt priority levels
to peripherals.

• Use standard ‘C’ functions as interrupt handlers.

• Hook and unhook multiple interrupt handlers to the same
interrupt priority level using both nesting and non-nesting
capabilities.

• Detect if a system interrupt is being asserted.

• Protect and unprotect critical regions of code in a portable
manner.

• Power Management Service - The Power Management service
allows the application to control the Dynamic Power Management
capabilities of the Blackfin processor. Specific functionality allows
the application to:

• Set core and system clock operating frequencies via a
function call.

• Set and detect the internal voltage regulator settings.

• Transition the processor among the various operat-
ing modes including, Full-On, Active, Sleep, and so
on.

Device Drivers and System Services Manual for Blackfin Processors 1-3

Introduction

• External Bus Interface Unit Control Service (EBIU) - The EBIU
Control service provides a collection of routines to set up the exter-
nal interfaces of the Blackfin processor, including the SDRAM
controller. This functionality enables users to:

• Adjust SDRAM refresh and timing rates to optimal values
for given system clock frequencies.

• Set individual bus interface settings.

• Complete single function setup for known configurations,
such as the Blackfin EZ-Kits.

• Deferred Callback Service - The Deferred Callback service allows
the application to be notified of asynchronous events outside of
high priority interrupt service routines. Using deferred callbacks
typically improves the overall I/O capacity of the system while at
the same time reducing interrupt latency. Specific functionality
allows the application to:

• Define how many callbacks can be pending at any point in
time.

• Define the interrupt priority level at which the callback ser-
vice executes.

• Create multiple callback services, each operating at a differ-
ent interrupt priority level.

• Post callbacks to a callback service with a relative priority
among all other callbacks posted to the same callback
service.

• DMA Management Service - The DMA Management service pro-
vides access into the DMA controller of the Blackfin processor.
The DMA Management service allows the application to schedule

System Services Overview

1-4 Device Drivers and System Services Manual for Blackfin Processors

DMA operations, both peripheral and memory DMA, supporting
both linear and two-dimensional transfer types. Specific function-
ality allows the application to:

• Set and detect the mapping of DMA channels to
peripherals.

• Configure individual DMA channels for inbound/outbound
traffic using circular (autobuffered) DMA or descriptor
based DMA.

• Command the DMA Manager to issue “live” or deferred
callbacks upon DMA completions.

• Queue descriptors, intermixing both linear and two-dimen-
sional transfers, on DMA channels.

• Enable the DMA Manager to loopback on descriptor chains
automatically.

• Continuously stream data into or out from a memory
stream or peripheral.

• Initiate linear and two-dimensional memory DMA transfers
with simple ‘C’ like, memcpy-type functions.

• Device Manager - The device driver model is used to control
devices, both internal and external to Analog Devices processors.
Specific functionality allow the application to:

• Open and close devices used by the application.

• Configure and control devices.

• Receive and transmit data through the devices using a vari-
ety of dataflow methods.

Device Drivers and System Services Manual for Blackfin Processors 1-5

Introduction

Application Interface
Each system service exports an API that defines the interface into that ser-
vice. Application software makes calls into the API of the system service to
access the functionality that is to be controlled.

Each API is designed to be called using the standard calling interface of
the development toolset’s ‘C’ run-time model. The API of each service can
be called by any ‘C’ or assembly language program that adheres to the call-
ing conventions and register usage of the ‘C’ run-time model.

In addition to the application software using the API to make calls into a
system service, some system services make calls into the API of other sys-
tem services. For the most part, each service operates independently of the
other services; however redundancies are eliminated by allowing one ser-
vice to access the functionality of another service.

For example, should the application need to be notified when a DMA
descriptor has completed processing, and the application has requested
deferred callbacks. In this case, the DMA Management service invokes the
Deferred Callback service to effect the callback into the application.

Another example of combined operation between services is in the case of
the Power Management and EBIU services. Assume that the system has
SDRAM and the application needs to conserve power by turning down
the core and system clock frequencies. When the application calls the
Power Management service to lower the operating frequencies, the Power
Management service automatically invokes the EBIU service, which
adjusts the SDRAM refresh rate to compensate for the reduced system
clock frequency.

System Services Overview

1-6 Device Drivers and System Services Manual for Blackfin Processors

Figure 1-1 illustrates the current collection of system services and the API
interactions among them.

Dependencies
With few constraints, applications can choose to use any individual service
or combination of services within their application. Applications do not
have to use each and every service. Further, each service does not need all
the resources associated with the system the service is controlling. For
example, the DMA Manager does not need control over each and every
DMA channel. The system can be configured for the DMA Manager to
control some channels, leaving the application or some other software to
control other DMA channels. (See the individual service chapters for more

Figure 1-1. System Services and API Interactions

APPLICATION

INTERRUPT CONTROLLER

POWER MANAGEMENT EBIU CONTROL

DMA MANAGER CALLBACK MANAGER

Device Drivers and System Services Manual for Blackfin Processors 1-7

Introduction

information on each individual service.) There are however, some depen-
dencies within the services of which the application developer should be
aware.

All the current services, except for the EBIU service, invoke the Interrupt
Control service for the management of interrupt processing. The DMA
Manager, Callback and Power Management Services each depend on the
IC service to manage interrupt processing for them.

If directed by the application to adjust SDRAM timing automatically, the
Power Management Service uses the EBIU Control Service to affect
SDRAM timing parameter changes when the power/operating speed pro-
file of the processor is changed.

When configured to use deferred callbacks (as opposed to “live” or inter-
rupt-time callbacks) the DMA Manager leverages the capabilities of the
Deferred Callback Service to provide deferred callbacks to the application.
When configured for “live” callbacks however, the DMA Manager does
not make use of the Deferred Callback Service.

The development toolset automatically determines these dependencies
and links into the executable only those services that are required by the
application. As each service is built as its own object file within the System
Services Library file, it is possible to further reduce code size of the final
executable by commanding the linker to eliminate any unused objects.
Refer to the development toolset documentation for more information.

Initialization
The API of each system service includes an initialization function that
must be called by the application, prior to accessing the other API func-
tions of the service. All initialization functions of the services are of the
form adi_xxx_Init() where xxx is the service name abbreviation. The ini-
tialization functions typically provide any data memory that is required of
the service and perform any setup and initialization of the systems being
controlled.

System Services Overview

1-8 Device Drivers and System Services Manual for Blackfin Processors

After reset, many applications need to adjust their operating frequency or
voltage and configure the external memories of the system. As such, the
Power Management and EBIU services are typically accessed when the
application starts. Since the Power Management service uses the function-
ality of the Interrupt Manager to control the PLL, the Interrupt Manager
should be initialized prior to the Power Management service. It is also
preferable to initialize the Power Management service prior to the EBIU
service.

The remaining services, assuming the application is using some combina-
tion of the remaining services, may require data memory as part of their
initialization. As some applications provide external memory to these ser-
vices, this is another reason to initialize the Power Management and EBIU
services before any of the others.

In summary, most applications find the initialization sequence below opti-
mal for their application. Any service not used by the application should
simply be omitted from the sequence.

1. Interrupt Control Service

2. Power Management Service

3. EBIU Service

4. Deferred Callback Service

5. DMA Manager Service

After all services that are to be used in the application have been initial-
ized, the remaining API functions in any of the services may be called by
the application.

Device Drivers and System Services Manual for Blackfin Processors 1-9

Introduction

Termination
The API of each system service also includes a termination function that
may be called by the application if the functionality of a service is no
longer required. All termination functions of the services are of the form
adi_xxx_Terminate() where xxx is the service name abbreviation. Many
embedded systems run in an endless operating loop and never call the ter-
mination function of a service. Applications that operate in endless loops
can save program memory by not calling the terminate functions.

Termination functions may make calls into other services whose function-
ality they may be using. For example, the DMA Manager uses the services
of the Interrupt Control service to manage interrupts. As part of the pro-
cess of terminating the DMA Manager Service, all DMA interrupt
handlers are unhooked via the Interrupt Control service. This means the
DMA Manager Service should be terminated prior to the Interrupt Con-
trol Service being terminated.

The sequence described below ensures that services are closed in a logical
sequence and ensures that no service is closed unknowingly to some other
service. Most applications find the initialization sequence below optimal
for their application. Any service not used by the application should sim-
ply be omitted from the sequence.

1. DMA Manager Service

2. Deferred Callback Service

3. EBIU Service

4. Power Management Service

5. Interrupt Control Service

After a service has been terminated, it must be re-initialized before any of
its functionality can be accessed again.

System Services Overview

1-10 Device Drivers and System Services Manual for Blackfin Processors

System Services Directory and File Structure
All files for the System Services are contained within the blackfin direc-
tory tree. In VisualDSP++ installations this is the same directory as the
one used for core development tools. Other development toolsets may use
other directory names for their toolkits, but the System Services can
always be found within the blackfin directory tree.

To use the System Services, applications need only include a single include
file in their source code, and link with a single System Services Library
module that is appropriate for their configuration.

Accessing the System Services API

Applications using the System Services should include the black-
fin/include/services directory in the compilers/assemblers
pre-processor search path. User source files accessing any of the System
Services APIs should simply include the services.h file, located in the
blackfin/include/services directory. User files do not need to include
any other files to use the System Services API.

The System Services API and functionality are uniform and consistent
across all Blackfin processors, including all single and multi-core devices.
Application software does not have to change regardless of which Blackfin
processor is being targeted. For example application software running on a
single-core ADSP-BF533 processor can operate unchanged on a
multi-core ADSP-BF561 processor.

In order to provide this consistent API to the application, the System Ser-
vices API needs to be aware of the specific processor variant being
targeted. The user should ensure that the processor definition macro for
the processor variant being targeted is defined when including the ser-
vices.h include file.

Device Drivers and System Services Manual for Blackfin Processors 1-11

Introduction

The VisualDSP++ toolset automatically sets the processor definition
macro when building projects. Application developers using the Visu-
alDSP++ toolset need do nothing further to ensure the processor
definition macro is defined.

Application developers using other toolsets, however, should ensure the
processor definition macro is appropriately defined. The services.h file
enumerates the specific processor variants that are supported. These pro-
cessor variants include:

The services.h file contains the full and complete list of processor vari-
ants that are supported.

Note: Although the API of the System Services does not change
between processor variants, the internals of the System Services dif-
fer depending on the specific processor variant and processor
revision number being targeted. For example, the number of DMA
channels for the ADSP-BF533 differs from the number of DMA
channels for the ADSP-BF561. Further, a workaround within the
services for revision x.y of a processor may not be needed for revi-
sion x.y of that same processor. These differences are accounted for
in the System Service Library module. See “System Services Direc-
tory and File Structure” for more information.

__ADSPBF531__ The ADSP-BF531 processor

__ADSPBF532__ The ADSP-BF532 processor

__ADSPBF533__ The ADSP-BF533 processor

...

System Services Overview

1-12 Device Drivers and System Services Manual for Blackfin Processors

Linking in the System Services Library

All object code for the System Services is included in the System Services
library file. This file is found in the blackfin/lib directory. In this direc-
tory is a System Services library file for each processor variant and
processor revision that is supported. The user should ensure that the
appropriate library is included in the list of object files for the linker. All
System Service Library files are of the form libsslxxx_yyyzz.dlb where:

• xxx represents the processor variant - This is typically a 3-digit
number identifying the processor variant, such as 532 for the
ADSP-BF532, 534 for the ADSP-BF534, and so on.

• _yyy represents the operating environment - This suffix represents
the operating environment being targeted such as vdk for
VDK-based systems, linux for Linux-based systems, and so on.
Libraries built for standalone, specifically non-RTOS environ-
ments, do not include the _yyy suffix.

• zz represents any special conditions for the library. The following
combinations are used:

• d - The library contains all debug information for the file.

• y - The library is built to avoid all known anomalies for all
revisions of silicon.

• dy - The library contains all debug information for the file
and is built to avoid all known anomalies for all revisions of
silicon.

• blank - A library without any additional suffix does not
include debug information and does not contain
workarounds to any anomalies.

Located within the blackfin/lib directory are subdirectories for
individual silicon revisions. The libraries in these subdirectories are
built for specific silicon revisions of the Blackfin processors.

Device Drivers and System Services Manual for Blackfin Processors 1-13

Introduction

Only a single System Services Library file should be included for the linker
to process. Application developers should choose the correct library based
on the processor variant, operating environment, and processor revision
number for their system.

For example, an application developer who wants a debug version of the
System Services Library and is targeting silicon revision 0.2 of the
ADSP-BF532 without any RTOS should link with the libss1532_d.dlb
file from the blackfin/lib/bf532_rev_0.2 subdirectory. As another
example, the application developer who wants a release version of the Sys-
tem Services Library that will run on any revision of ADSP-BF532 silicon
and is using the VDK, should link with the libss1532_vdky.dlb file from
the blackfin/lib directory.

It is strongly recommended that developers use the debug versions
of the System Services Library during development as built-in
error-checking code within the library can save countless hours of
development time.

Rebuilding the System Services Library

Under normal situations, there is no need to rebuild the System Services
Library. However, to accommodate unforeseen circumstances and provide
the user the ability to tailor the System Services to their particular needs,
all source code and include files necessary to rebuild the System Services
Library are provided. In addition, VisualDSP++ project files are included
for application developers using the VisualDSP++ development toolset.

System Services Overview

1-14 Device Drivers and System Services Manual for Blackfin Processors

All code for the System Services Library is located in the following
directories:

• blackfin/lib - This directory contains the Analog Devices built
versions of the System Service library files (*.dlb).

• blackfin/lib/src/services - This directory contains all the
source code files and non-API include files for the System Services.
Also in this directory are the VisualDSP++ project files that can be
used to rebuild the libraries.

• blackfin/include/services - This directory contains all API
include files for the System Services.

VisualDSP++ users can simply rebuild the System Services Library by
using the build command after opening the appropriate VisualDSP++
project file.

To rebuild the libraries using other development toolsets, the following
process should be performed:

1. Set the pre-processor include path to include black-
fin/include/services and blackfin/lib/src/services.

2. Define the processor variant according to the definitions in the file
services.h.

3. Define the silicon revision macro, __SILICON_REVISION__, to the
proper value. See the _si_revision switch in the compiler for
more information.

Device Drivers and System Services Manual for Blackfin Processors 1-15

Introduction

4. Compile/assemble all files in the blackfin/lib/src/services
directory.

5. Link the appropriate compiled/assembled objects into a library.
Include all object files without any operating environment exten-
sion (such as vdk) and all object files with the appropriate operating
environment extension specific for the environment being targeted
(such as vdk).

Examples
The System Services distribution includes many examples that illustrate
how to use the System Services. Please refer to these examples for addi-
tional information on how to use the System Services effectively.

Device Driver Overview
Device drivers provide a mechanism for applications to control a device
effectively. Devices may be on-chip or off-chip hardware devices, or even
software modules that are best managed as virtual devices. Device drivers
are typically constructed such that the application is insulated from the
nuances of the hardware (or software) being controlled. In this way, both
the device drivers and the devices that are being controlled can be updated
or replaced without affecting the application.

The Analog Devices Device Driver Model has been created to provide a
simple, convenient method for applications to control devices commonly
found in and around Analog Devices processors. It has also been designed
to provide a simple and efficient mechanism for the creation of new device
drivers.

Device Driver Overview

1-16 Device Drivers and System Services Manual for Blackfin Processors

Application Interface
The Device Driver Model provides a consistent, simple and familiar
Application Programming Interface (API) for device drivers. All devices
drivers that conform to the model use the same simple interface into the
driver.

Most devices either receive and/or transmit data, sometimes transforming
the data in the process. This data is encapsulated in a buffer. The buffer
may contain small bits of data, such as for a UART-type device that pro-
cesses one character at a time, or large pieces of data, such as a video
device that processes NTSC frames of approximately 1MB in size. Appli-
cations typically provide the buffers to the device, though it is possible for
devices to pass buffers from one device to another without any application
involvement.

The actual API into a model-compliant driver consists of the following
basic functions:

• adi_dev_Open() - Opens a device for use.

• adi_dev_Close() - Closes down a device.

• adi_dev_Read() - Provides a device with buffers for inbound data.

• adi_dev_Write() - Provides a device with buffers for outbound
data.

• adi_dev_Control() - Sets/detects control and status parameters for
a device.

Like the System Service APIs, the Device Driver API is designed to be
called using the standard calling interface of the development toolset’s ‘C’
run-time model. The Device Driver API can be called by any C or assem-
bly language program that adheres to the calling conventions and register
usage of the C run-time model.

Device Drivers and System Services Manual for Blackfin Processors 1-17

Introduction

Device Driver Architecture
The Device Driver Model separates the functionality of device drivers into
two main components, the Device Manager and the Physical Drivers.

The Device Manager is a software component that provides much of the
functionality common to the vast majority of device drivers. For example,
depending on how the application wants the device driver to operate, the
application may command a device driver to operate in synchronous mode
or asynchronous mode. In synchronous mode, when the application calls
the adi_dev_Read() or adi_dev_Write() API function to read data from
or send data to the device; the API function does not return to the applica-
tion until the operation has completed. In asynchronous mode, the API
function returns immediately to the application, while the data is moved
in the background. It would be wasteful to force each and every device
driver (or more accurately, each and every Physical Driver) to provide
logic that operates both synchronously and asynchronously. The Device
Manager provides this functionality, relieving each Physical Driver from
re-implementing this capability.

The Device Manager also provides the API to the application for each
device driver. This ensures that the application has the same consistent
interface regardless of the peculiarities of each device.

While there is one and only one Device Manager exists in a system, there
can be any number of Physical Drivers in a system. A Physical Driver is
that component of a device driver that accesses and controls the physical
device. The Physical Driver is responsible for all the “bit banging” and
control and status register manipulations of the physical device. All device
specific information is contained and isolated in the Physical Driver.

Device Driver Overview

1-18 Device Drivers and System Services Manual for Blackfin Processors

This architecture is illustrated in Figure 1-2:

Interaction with System Services

As shown in Figure 1-2, the Device Driver Model leverages the capabili-
ties of the System Services. Each software component in the system,
whether it is the application, RTOS (if present), the Device Manager, or
each Physical Driver can access and call into the System Services API.

The benefits of using this approach are enormous. In addition to the code
size and data memory savings, this approach allows each software compo-
nent access to the resources of the system and processor in a cooperative

Figure 1-2. Device Manager Architecture

APPLICATION

DEVICE MANAGER

RTOS (OPTIONAL)

DEVICE
DRIVER

COMPONENTS
PHYSICAL

DRIVER
PHYSICAL

DRIVER
PHYSICAL

DRIVER

SYSTEM SERVICES

Device Drivers and System Services Manual for Blackfin Processors 1-19

Introduction

manner. Further, the amount of development effort for Physical Drivers is
substantially reduced as each driver does not have to re-implement any of
the functionality provided by the Device Manager or System Services.

Initialization
Prior to accessing any individual driver, the Device Manager must first be
initialized. The initialization function, adi_dev_Init(), is called by the
application to setup and initialize the Device Manager.

Though the Device Driver Model is dependent upon System Services, the
initialization function of the Device Manager does not rely on any of the
System Services. As such the current revision of the Device Manager can
be initialized either before or after the System Services initialization.

However, future versions of the Device Manager initialization function
may require some of the System Services capabilities. As such, it is good
practice to initialize the required System Services prior to initializing the
Device Manager. Refer to the “Initialization” on page 1-7 for more infor-
mation on the initialization of the System Services.

Termination
The API of the Device Driver Model includes a termination function that
may be called by the application if the device drivers are no longer
required. The termination function, adi_dev_Terminate(), is called to
free up the resources used by the Device Manager and any open Physical
Drivers. Many embedded systems run in an endless operating loop and
never call the termination function of the Device Manager. Applications
that operate in endless loops can save program memory by not calling the
terminate function.

Device Driver Overview

1-20 Device Drivers and System Services Manual for Blackfin Processors

As part of the termination function processing, the Device Manager closes
all open Physical Drivers. The Physical Drivers are closed in an abrupt
manner. If a more graceful shutdown is needed, the application may prefer
to close any open Physical Drivers first, and then call the termination
function.

Note that because of the reliance on the System Services, the termination
function of the Device Manager should be called prior to any termination
functions of the System Services. This ensures that the System Services can
be called by the Device Manager and/or Physical Drivers as part of their
shutdown procedure.

After the Device Manager has been terminated, it must be re-initialized
before any of its functionality can be accessed again.

Device Driver Directory and File Structure
All files for the Device Driver Model are contained within the blackfin
directory tree. In VisualDSP++ installations this is the same directory as
the one used for storing the core development tools. Other development
toolsets may use other directory names for their toolkits, but the Device
Driver files can always be found within the blackfin directory tree.

To use the device drivers, applications need only use some include files in
their source code, and link with a Device Driver Library and a System Ser-
vices Library module.

Accessing the Device Driver API

Applications using the Device Driver Model should include the black-
fin/include/services and blackfin/include/drivers directories in the
compilers/assemblers pre-processor search path. User source files accessing
the Device Manager API should include the files services.h and adi_
dev.h, in order, located in the blackfin/include/services and black-

Device Drivers and System Services Manual for Blackfin Processors 1-21

Introduction

fin/include/drivers directories, respectively. In addition, the user’s
source file should use the include file of the Physical Driver that will be
accessed.

For example, user code that is accessing the Analog Devices Parallel
Peripheral Interface (PPI) driver would include the following lines in their
source file (in order):

#include "services.h” // system services
#include "adi_dev.h” // device manager
#include "adi_ppi.h” // ppi physical driver

The Device Driver API and functionality is uniform and consistent across
all Blackfin processors, including all single and multi-core devices. Appli-
cation software does not change regardless of which Blackfin processor is
being targeted. For example application software running on a single core
ADSP-BF533 processor can operate unchanged on a multi core
ADSP-BF561 processor.

In order to provide this consistent API to the application, the System Ser-
vices, Device Manager and Physical Drivers need to be aware of the
specific processor variant being targeted. The user should ensure that the
processor definition macro for the processor variant being targeted is
defined when including the System Services, services.h, Device Man-
ager, adi_dev.h, and physical driver include files.

The VisualDSP++ toolset automatically sets the processor definition
macro when building projects. Application developers using the Visu-
alDSP++ toolset need do nothing further to ensure the processor
definition macro is defined.

Application developers using other toolsets should, however, ensure the
processor definition macro is appropriately defined. The services.h file
enumerates the specific processor variants that are supported. These pro-
cessor variants include:

Device Driver Overview

1-22 Device Drivers and System Services Manual for Blackfin Processors

The services.h file contains the full and complete list of processor vari-
ants that are supported by the System Services. The adi_dev.h file
contains the list of processor families that are supported by the Device
Driver Model.

Linking in the Device Driver Library

All object code for the Device Manager and Analog Devices-supplied
Physical Drivers is included in the Device Driver library file. This file is
found in the blackfin/lib directory. In this directory is a Device Driver
library file for each and every processor variant that are supported. The
user should ensure that the appropriate library is included in the list of
object files for the linker. The Device Driver Library file is of the form
libdrvxxxzz.dlb where:

• xxx represents the processor variant - This is typically a 3-digit
number identifying the processor variant such as 532 for the
ADSP-BF532, 534 for the ADSP-BF534, and so on.

• zz represents any special conditions for the library. The following
combinations are used:

• d - the library contains all debug information for the file.

• y - The library is build to avoid all known anomalies for all
revisions of silicon.

__ADSPBF531__ The ADSP-BF531 processor

__ADSPBF532__ The ADSP-BF532 processor

__ADSPBF533__ The ADSP-BF533 processor

...

Device Drivers and System Services Manual for Blackfin Processors 1-23

Introduction

• dy - The library contains all debug information for the file
and is built to avoid all known anomalies for all revisions of
silicon.

• blank - A library without an additional suffix does not
include debug information and does not contain
workarounds to any anomalies.

Located within the blackfin/library directory are subdirectories for
individual silicon revisions. The libraries in these subdirectories are built
for specific silicon revisions of the processors.

Only a single Device Driver Library file should be included for the linker
to process. The application developer should choose the correct library
based on the processor variant for their system.

For example, an application developer who wants a debug version of the
Device Driver Library and is targeting silicon revision 0.2 of the
ADSP-BF532 should link with the libdrv532d.dlb file from the black-
fin/lib/bf532_rev_0.2 subdirectory. As another example, the application
developer who wants a release version of the Device Driver Library that
will run on any revision of ADSP-BF532 silicon should link with the
libdrv532y.dlb file from the blackfin/lib directory.

It is strongly recommended that developers use the debug versions
of the Device Driver Library during development, because built-in
error-checking code within the library can save countless hours of
development time.

Rebuilding the Device Driver Library

Under normal situations, there is no need to rebuild the Device Driver
Library. However, to accommodate unforeseen circumstances and provide
the user with the ability to tailor the implementation to their particular
needs, all source code and include files necessary to rebuild the Device

Device Driver Overview

1-24 Device Drivers and System Services Manual for Blackfin Processors

Driver Library are provided. In addition, VisualDSP++ project files are
included for application developers using the VisualDSP++ development
toolset.

All code for the Device Driver Library is located in the following
directories:

• blackfin/lib - This directory contains the Analog Devices built
versions of the Device Driver library files (*.dlb).

• blackfin/lib/src/drivers - This directory contains all the source
code files and non-API include files for the Device Manager and
Analog Devices provided Physical Drivers. Also in this directory
are the VisualDSP++ project files that can be used to rebuild the
libraries.

• blackfin/include/drivers - This directory contains the Device
Manager API include file and the include files for all Analog
Devices provided Physical Drivers.

VisualDSP++ users can rebuild the Device Driver Library by using the
build command after opening the appropriate VisualDSP++ project file.

To rebuild the libraries using other development toolsets, the following
steps should be performed:

1. Set the pre-processor include path to include black-
fin/include/drivers and blackfin/lib/src/drivers.

2. Define the processor variant according to the definitions in the
services.h file.

Device Drivers and System Services Manual for Blackfin Processors 1-25

Introduction

3. Define the silicon revision macro, __SILICON_REVISION__, to the
proper value. See the -si-revision switch in the compiler for
more information.

4. Compile/assemble all files in the directory
blackfin/lib/src/drivers.

• Link the appropriate compiled/assembled objects including all
object files into a library.

Examples
The Device Driver distribution includes examples that illustrate how to
use the Device Drivers. Please refer to these examples for additional infor-
mation on how to use the Device Drivers effectively.

Device Driver Overview

1-26 Device Drivers and System Services Manual for Blackfin Processors

Device Drivers and System Services Manual for Blackfin Processors 2-1

2 INTERRUPT MANAGER

This chapter describes the Interrupt Manager that controls and manages
the interrupt and event operations of the Blackfin processor.

This chapter contains:

• “Introduction” on page 2-2

• “Examples” on page 2-15

• “Interrupt Manager API Reference” on page 2-17

Introduction

2-2 Device Drivers and System Services Manual for Blackfin Processors

Introduction
The Blackfin processor employs a two-tiered mechanism for controlling
interrupts and events. System level interrupts are controlled by the System
Interrupt Controller (SIC). All peripheral interrupt signals are routed
through the System Interrupt Controller and then, depending on the set-
tings of the System Interrupt Controller, routed to the Core Event
Controller (CEC). The Core Event Controller processes these events and,
depending on the settings of the Core Event Controller, vectors the pro-
cessor to handle the events.

The Interrupt Manager provides functions that allow the application to
control every aspect of both the System Interrupt Controller and the Core
Event Controller. It does this so that events and interrupts are handled
and processed in an efficient, yet cooperative, manner.

The Blackfin processor provides 16 levels of interrupt and events. These
levels, called Interrupt Vector Groups (IVG), are numbered from 0 to 15,
with the lowest number having the highest the priority. Some IVG levels
are dedicated to certain events, such as emulation, reset, Non-Maskable
Interrupt (NMI) and so on. Other IVG levels, specifically levels 7 through
15, are considered general purpose events and are typically used for system
level (peripheral) interrupts or software interrupts. All IVG processing is
performed in the CEC. When a specific IVG is triggered, assuming the
event is enabled, the CEC looks up the appropriate entry in the Event
Vector Table, and vectors execution to the address in the table where the
event is processed.

All system or peripheral interrupts are first routed through the SIC.
Assuming the SIC has been so programmed, peripheral interrupts are then
routed to the CEC for processing. The SIC provides a rich set of function-
ality for the processing and handling of peripheral interrupts. In addition
to allowing/disallowing peripheral interrupts to be routed to the CEC, the

Device Drivers and System Services Manual for Blackfin Processors 2-3

Interrupt Manager

SIC allows peripheral interrupts to be mapped to any of the CEC’s general
purpose IVG levels, and controls whether or not these interrupts wake the
processor from an idled operating mode.

In systems employing Blackfin processors, there are often more potential
interrupt sources than there are IVG levels. As stated above, some events,
such as NMI, map one to one to an IVG level. Others, typically infre-
quent interrupts such as peripheral error interrupts are often “ganged” in a
single IVG level.

The Interrupt Manager allows the application to execute complete control
over how interrupts are handled, whether they are masked or unmasked,
mapped one to one or ganged together, whether the processor should be
awakened to service an interrupt and so on. The Interrupt Manager also
allows the creation of interrupt handler chains. An interrupt handler is a
C-callable function that is provided by the application to process an inter-
rupt. Through the Interrupt Manager, the application can hook in any
number of interrupt handlers for any IVG level. In the case where multi-
ple events are ganged to a single IVG level, this allows each handler to be
designed independently from any other and allows the application to pro-
cess these interrupts in a straightforward manner.

Further, the Interrupt Manager only processes those IVG levels and sys-
tem interrupts that the application directs the Interrupt Manager to
control. This allows the application developer to have complete unfettered
access to any IVG level or system interrupt, if they want manual control of
interrupts.

Multi-core Blackfin processors extend on this by including one System
Interrupt Controller and one Core Event Controller for each core. This
provides maximum flexibility by allowing application developers to decide
how to map interrupts to individual cores, multiple cores and so on.
When using multi-core Blackfin processors, typically one Interrupt Man-
ager for each core is used. Because there is no reason to provide multiple

Initialization

2-4 Device Drivers and System Services Manual for Blackfin Processors

Interrupt Managers on single core devices, this service is not supported.
Application developers should not attempt to instantiate more than one
Interrupt Manager per core.

Following the convention of all the System Services, the Interrupt Man-
ager uses a unique and unambiguous naming convention to guard against
conflicts. All enumeration values, typedefs and macros use the ADI_INT_
prefix, while all functions within the Interrupt Manager use the adi_int_
prefix.

All Interrupt Manager API functions return the ADI_INT_RESULT return
code. See the adi_int.h file for the list of return codes. Like all System
Services, the return code that signals successful completion, ADI_INT_
RESULT_SUCCESS for the Interrupt Manager, is defined to be 0, allowing
applications to quickly and easily determine if any errors occurred in
processing.

Initialization
In order to use the functionality of the Interrupt Manager, the Interrupt
Manager must first be initialized. The initialization function of the Inter-
rupt Manager is called adi_int_Init. The application passes to the
initialization function memory that the Interrupt Manager can use during
its lifetime.

The amount of memory that should be provided depends on the number
of secondary handlers that are to be used by the application. When using
interrupt handler chaining, the Interrupt Manager considers the first
interrupt handler that is hooked into an IVG level to be the primary inter-
rupt handler. Any additional interrupt handlers that hooked into that
same IVG level are considered secondary handlers. Without any addi-
tional memory from the application, the Interrupt Manager can support
one primary interrupt handler for each IVG level. If the application never
has more than one interrupt handler on each IVG level, in other words
only the primary interrupt handler and no secondary handlers are present,

Device Drivers and System Services Manual for Blackfin Processors 2-5

Interrupt Manager

then the application does not need to provide memory to the Interrupt
Manager’s initialization function. If however, the application will be
hooking in secondary interrupt handlers, the application needs to provide
additional memory to support the secondary handlers. The macro ADI_
INT_SECONDARY_MEMORY is defined to be the amount of memory, in bytes,
that is required to support a single secondary handler. Therefore, the
application should provide ‘n’ times ADI_INT_SECONDARY_MEMORY to the
initialization function, where ‘n’ is the number of secondary handlers that
are to be supported.

Another parameter passed to the initialization function is the parameter
that the Interrupt Manager passes to the adi_int_EnterCriticalRegion()
function. This value is dependent upon the operating environment of the
application. See the adi_int_EnterCriticalRegion function below for
more information.

When called, the initialization function initializes its internal data struc-
tures and returns. No changes are made to either the CEC or SIC during
initialization. After initialization, any of the other Interrupt Manager API
functions may be called.

Termination
When the functionality of the Interrupt Manager is no longer required,
the application can call the termination function of the Interrupt Man-
ager, adi_int_Term(). Many applications operate in an endless loop and
never call the termination function.

When called, the termination function unhooks all interrupt handlers,
masking off (disabling) all interrupts that the Interrupt Manager was con-
trolling. After calling the termination function, any memory provided to
the initialization function may be re-used by the application. No other
Interrupt Manager functions can be called after termination. If Interrupt

Core Event Controller Functions

2-6 Device Drivers and System Services Manual for Blackfin Processors

Manager services are required after the termination function is called, the
application must re-initialize Interrupt Manager services by calling the
adi_pwr_Init function.

Core Event Controller Functions
Only two functions are necessary to provide complete control over the
Core Event Controller.

adi_int_CECHook()
The adi_int_CECHook() function is used to hook an interrupt handler
into the handler chain for an IVG level. When called, the application
passes in the IVG number that is to be handled, the address of the handler
function, a parameter that the Interrupt Manager automatically passes
back to the interrupt handler when the interrupt handler is invoked, and a
flag indicating whether or not interrupt nesting should be enabled for this
IVG level.

The handler function itself is a simple C-callable function that conforms
to the ADI_INT_HANDLER_FN typedef. The interrupt handler is not an
Interrupt Service Routine (ISR) but a standard C-callable function. When
the IVG level triggers it, the Interrupt Manager calls the interrupt handler
to process the event. The Interrupt Manager passes the client argument
that was passed to the Interrupt Manager via the adi_int_CECHook() func-
tion to the interrupt handler. The interrupt handler takes whatever action
is necessary to process the interrupt, then returns with either the ADI_INT_
RESULT_PROCESSED or ADI_INT_RESULT_NOT_PROCESSED return code.

Interrupt handlers should be written in such a way so as to interrogate the
system quickly to determine if the event that triggered the interrupt
should be processed by the interrupt handler. If the event that caused the
interrupt is not the event the interrupt handler was expecting, the inter-
rupt handler should immediately return with the ADI_INT_RESULT_NOT_

Device Drivers and System Services Manual for Blackfin Processors 2-7

Interrupt Manager

PROCESSED return code. If the interrupt handler returns the ADI_INT_
RESULT_NOT_PROCESSED return code, then the Interrupt Manager automat-
ically invokes the next interrupt handler, if any, that is hooked into the
same IVG level. If the event that caused the interrupt is expected by the
interrupt handler, the interrupt handler performs whatever processing is
necessary and then returns the ADI_INT_RESULT_PROCESSED return code. If
an interrupt handler returns the ADI_INT_RESULT_PROCESSED return code,
the Interrupt Manager does not invoke any other interrupt handlers that
may be hooked into that IVG chain.

The nesting flag parameter is of significance only when the first interrupt
handler is hooked into an IVG chain. The first interrupt handler that
hooks into an IVG chain is called the primary handler. Any additional
handlers that are hooked into that same IVG chain are called secondary
handlers. When the primary handler is hooked into the chain, the Inter-
rupt Manager loads an ISR into the appropriate entry of the Event Vector
Table. If the nesting flag is set, the ISR that the Interrupt Manager loads is
one that supports interrupt nesting. If the nesting flag is clear, then the
ISR that the Interrupt Manager loads is one that does not support inter-
rupt nesting. When secondary handlers are hooked into an IVG chain, the
nesting flag is ignored.

Lastly, the adi_int_CECHook() function unmasks the appropriate bit in
the CEC’s IMASK register, thereby enabling the interrupt to be processed.

In most applications, users take great care to optimize the processing that
occurs for the highest frequency and highest urgency interrupts. Typically,
the highest frequency or highest urgency interrupts are assigned their own
IVG level, while less frequent or lower urgency interrupts, such as error
processing, are ganged together on a single IVG level.

The Interrupt Manager continues that thinking and has been optimized to
allow extremely efficient processing for primary interrupt handlers.
Though still efficient, secondary handlers are called after the primary han-
dler. Secondary handlers are hooked into the IVG chain in a stacked or
Last In First Out (LIFO) fashion. This means that when an event is trig-

Core Event Controller Functions

2-8 Device Drivers and System Services Manual for Blackfin Processors

gered, after calling the primary handler (and assuming the primary
handler did not return the ADI_INT_RESULT_PROCESSED return code), the
Interrupt Manager calls the last secondary handler that was hooked, fol-
lowed by the second to last installed handler, and so on.

To ensure optimal performance, the application developer should manage
which interrupt handlers are hooked as primaries and which are hooked as
secondary handlers.

adi_int_CECUnhook()
The adi_int_CECUnhook() function is used to unhook an interrupt han-
dler from the interrupt handler chain for a particular IVG level. When
called, the application passes in the IVG number and the address of the
interrupt handler function that is to be unhooked from the chain.

The function removes the interrupt handler from the chain of handlers for
the given IVG level. If the primary handler is being removed, the last sec-
ondary handler that was hooked becomes the new primary handler. If after
removing the given interrupt handler there are no interrupt handlers left
in the IVG chain, the adi_int_CECUnhook() function masks the appropri-
ate bit in the CEC’s IMASK register, thereby disabling the interrupt.

Interrupt Handlers
Since the interrupt handlers registered with the Interrupt Manager are
invoked from within the built-in IVG interrupt service routine, and since
there may be several interrupts pending for the same IVG level, individual
interrupt handlers must not invoke the RTI instruction on completion.
Instead, they should return using the RTS return function. Interrupt han-
dlers are in fact nothing more than typical C-callable subroutines.

Device Drivers and System Services Manual for Blackfin Processors 2-9

Interrupt Manager

Each peripheral interrupt handler must, therefore, conform to the follow-
ing template,

 ADI_INT_HANDLER(mjk_SPORT_RX_handler)
 {
 // user code
 }

where the ADI_INT_HANDLER macro is defined as

 #define ADI_INT_HANDLER(NAME) \
 void (*NAME)(void *ClientArg)

System Interrupt Controller Functions
The following functions are provided to give the application complete
control over the System Interrupt Controller:

• adi_int_SICEnable() - Enables peripheral interrupts to be passed
to the CEC.

• adi_int_SICDisable() - Disables peripheral interrupts from being
passed to the CEC.

• adi_int_SICSetIVG() - Sets the IVG level to which a peripheral
interrupt is mapped.

• adi_int_SICGetIVG() - Detects the IVG level to which a peripheral
interrupt is mapped.

• adi_int_SICWakeup() - Establishes whether or not a peripheral
interrupt wakes up the processor from an idled state.

• adi_int_SICInterruptAsserted() - Detects whether or not a
peripheral interrupt is asserted.

System Interrupt Controller Functions

2-10 Device Drivers and System Services Manual for Blackfin Processors

All SIC functions take as a parameter an enumeration value that uniquely
identifies a peripheral interrupt. The enumeration ADI_INT_PERIPHERAL_
ID identifies each possible peripheral interrupt source for the processor.
This enumeration is defined in the adi_int.h file. Refer to the file for the
complete list of values for each supported Blackfin processor.

adi_int_SICDisable()
The adi_int_SICDisable() function is used to disable a peripheral inter-
rupt from being passed to the Core Event Controller. When called, this
function programs the appropriate SIC IMASK register to disable the
given peripheral interrupt.

adi_int_SICEnable()
The adi_int_SICEnable() function is used to enable a peripheral inter-
rupt to be passed to the Core Event Controller. When called, this function
programs the appropriate SIC IMASK register to enable the given periph-
eral interrupt.

adi_int_SICGetIVG()
The adi_int_SICGetIVG() function is used to detect the IVG level to
which a peripheral interrupt is mapped. In addition to the ADI_INT_
PERIPHERAL_ID parameter, this function is passed pointer-to-memory loca-
tion information. The function interrogates the proper field of the
appropriate SIC Interrupt Assignment register and stores the IVG level (0
to 15) to which the given peripheral interrupt is mapped into the memory
location.

Device Drivers and System Services Manual for Blackfin Processors 2-11

Interrupt Manager

adi_int_SICInterruptAsserted()
The adi_int_SICInterruptAsserted() function is used to detect whether
or not the given peripheral interrupt is asserted. Though it can be called at
any time, it is intended that this function is called immediately by the
application’s interrupt handlers to determine if a given peripheral inter-
rupt is being asserted, allowing the interrupt handler to determine if its
peripheral is asserting the interrupt.

Instead of using the usual ADI_INT_RESULT_SUCCESS return code, this func-
tion returns the ADI_INT_RESULT_ASSERTED or ADI_INT_RESULT_NOT_
ASSERTED return code upon a successful completion. If errors are detected
with the calling parameters, this function may return a different error
code.

adi_int_SICSetIVG()
The adi_int_SICSetIVG() function is used to set the IVG level to which a
peripheral interrupt is mapped. Upon powerup, the Blackfin processor
invokes a default mapping of peripheral interrupts to IVG level. This
function alters that mapping. In addition to the ADI_INT_PERIPHERAL_ID
parameter, this function is passed the IVG level (0 to 15) to which the
peripheral interrupt should be mapped. The function modifies the proper
field within the appropriate SIC Interrupt Assignment register to the new
mapping.

adi_int_SICWakeup()
The adi_int_SICWakeup() function is used to enable or disable a periph-
eral interrupt from waking up the core when the interrupt trigger and the
core are in an idled state. In addition to the ADI_INT_PERIPHERAL_ID
parameter, this function is passed a TRUE/FALSE flag. If the flag is
TRUE, the SIC Interrupt Wakeup register is programmed such that the
given peripheral interrupt wakes up the core when the interrupt is trig-

Protecting Critical Regions

2-12 Device Drivers and System Services Manual for Blackfin Processors

gered. If the flag is FALSE, the SIC Interrupt Wakeup register is
programmed such that the given peripheral interrupt does not wake up the
core when the interrupt is triggered.

Note that this function does not enable or disable interrupt processing.
Also note that it is possible to configure the SIC so that a peripheral inter-
rupt wakes up the core from an idled state but does not process the
interrupt. This may or may not be the intended operation.

Protecting Critical Regions
In embedded systems it is often necessary to protect a critical region of
code while it is being executed. This is often necessary while one logical
programming sequence is updating or modifying a piece of data. In these
cases, another logical programming sequence, such as interrupt processing
in one system, or different thread in an RTOS based system, is prevented
from interfering while the critical data is being updated.

To that end, the Interrupt Manager provides two functions that can be
used to bracket a critical region of code. These functions are adi_int_
EnterCriticalRegion() and adi_int_ExitCriticalRegion(). The appli-
cation calls the adi_int_EnterCriticalRegion() function at the
beginning of the critical section of code, and then calls the adi_int_Exit-
CriticalRegion() function at the end of the critical section. These
functions should always be used in pairs.

The actual implementation of these functions varies from operating envi-
ronment to operating environment. For example in a standalone system,
in systems without any RTOS, what actually happens in these functions
may be different than the version of these functions for an RTOS based
system. The principle and usage however, are always the same regardless of
implementation. In this way, application code always operates the same
way, and does not have to change regardless of the operating environment.

Device Drivers and System Services Manual for Blackfin Processors 2-13

Interrupt Manager

The adi_int_EnterCriticalRegion() function is passed an argument of
type void * and returns an argument of type void *. The value that is
returned from the adi_int_EnterCriticalRegion() function must always
be passed to the corresponding adi_int_ExitCriticalRegion() function.
For example, examine the following code sequence:

…
Value = adi_int_EnterCriticalRegion(pArg);
… // critical section of code
adi_int_ExitCriticalRegion(Value);
…

The value that is returned from the adi_int_EnterCriticalRegion()
function must be passed to the corresponding adi_int_ExitCriticalRe-
gion() function. While nesting of calls to these functions is allowed, the
application developer minimizes the use of these functions to only those
critical sections of code, and realize that in all likelihood the processor is
being placed in some altered state. This could affect the performance of
the system, while in the critical regions. For example, it could be that
interrupts are disabled in the critical region. The application developer
typically does not want to have interrupts disabled for long periods of
time. These functions should be used sparingly and judiciously.

Nesting of these calls is allowed. For example consider the following code
sequence that makes a call to the function Foo() while in a critical section
of code. The function Foo() also has a critical region of code.

…
Value = adi_int_EnterCriticalRegion(pArg);
… // critical section of code
Foo(); // call to Foo()
adi_int_ExitCriticalRegion(Value);
…

void Foo(void) {
void *Value;
…
Value = adi_int_EnterCriticalRegion(pArg);

Modifying IMASK

2-14 Device Drivers and System Services Manual for Blackfin Processors

… // critical section of code
adi_int_ExitCriticalRegion(Value);
…
}

This practice is allowed, however the application developer is cautioned
that overuse of these functions can affect system performance.

The pArg value that is passed into the adi_int_EnterCriticalRegion()
function is dependent upon the actual implementation for the given oper-
ating environment. In some operating environments the value is not used
and can be NULL. The user should check the source file for the specific
operating environment, adi_int_xxx.c in the blackfin/lib/src/ser-
vices directory where xxx is the operating environment, for more
information on the pArg parameter.

All system services and device drivers use these functions exclu-
sively to protect critical regions of code. Application software
should also use these functions exclusively to protect critical
regions of code within the application.

Modifying IMASK
Though applications rarely need to have the processor’s IMASK register
value modified, the Interrupt Manager itself modifies the IMASK register
value to control the CEC properly. In some RTOS-based operating envi-
ronments, the RTOS tightly controls the IMASK register and provides
functions that allow the manipulation of IMASK.

In order to ensure compatibility across all operating environments, the
Interrupt Manager provides functions that allow bits within the IMASK
register to be set or cleared. Depending on the operating environment,
these function may modify the IMASK value directly, or use the RTOS
provided IMASK manipulation functions. Regardless of how the IMASK
value is changed, the Interrupt Manager API provides a uniform and con-
sistent mechanism for this.

Device Drivers and System Services Manual for Blackfin Processors 2-15

Interrupt Manager

Two operating environment implementation dependent functions are
provided to set and clear bits in the IMASK register. These functions are
adi_int_SetIMASKBits() and adi_int_ClearIMASKBits. These functions
take as a parameter a value that corresponds to the IMASK register of the
processor being targeted. When the adi_int_SetIMASKBits() function is
called, the function sets to 1 those bits in the IMASK register that have a
one in the corresponding bit position of the value passed in. When the
adi_int_ClearIMASKBits() function is called, the function clears those
bits (to 0) in the IMASK register that have a 1 in the corresponding bit posi-
tion of the value passed in.

Consider the following example code. Assume that IMASK is a 32-bit
value and contains 0x00000000 upon entry into the code:

…
… // IMASK = 0x00000000
ReturnCode = adi_int_SetIMASKBits(0x00000003);
… // IMASK now equals 0x00000003
ReturnCode = adi_int_ClearIMASKBits(0x00000001);
… // IMASK now equals 0x00000002
ReturnCode = adi_int_ClearIMASKBits(0x00000002);
… // IMASK now equals 0x00000000

While it is very unlikely that the application ever needs to control individ-
ual IMASK bit values, the Interrupt Manager uses these functions to control
the CEC.

Examples
Examples demonstrating use of the Interrupt Manager can be found in the
blackfin/EZ-Kits subdirectories.

File Structure

2-16 Device Drivers and System Services Manual for Blackfin Processors

File Structure
The API for the Interrupt Manager is defined in the file adi_int.h. This
file is located in the blackfin/include/services subdirectory and is auto-
matically included by the services.h file in that same directory. Only the
services.h file should be included in the application code.

Applications should link with one and only one of the System Services
library files. These files are located in the blackfin/lib directory. See the
appropriate section in the “Introduction” on page 6-1 in DMA Manager
for more information on selecting the proper library file.

For convenience, all source code for the Interrupt Manager is located in
the blackfin/lib/src/services directory. All operating environment
dependent code is located in the file adi_int_xxx.c where xxx is the oper-
ating environment being targeted. These files should never be linked into
an application, as the appropriate System Services Library file contains all
required object code.

Device Drivers and System Services Manual for Blackfin Processors 2-17

Interrupt Manager

Interrupt Manager API Reference
This section provides descriptions of the Interrupt Manager module’s
Application Programming Interface (API) functions.

Notation Conventions
The reference pages for the API functions use the following format:

Name and purpose of the function

Description – Function specification

Prototype – Required header file and functional prototype

Arguments – Description of function arguments

Return Value – Description of function return values

Interrupt Manager API Reference

2-18 Device Drivers and System Services Manual for Blackfin Processors

adi_int_Init

Description

This function sets aside and initializes memory for the Interrupt Manager.
It also initializes other tables and vectors within the Interrupt Manager.
This function should only be called once per core. Separate memory areas
should be assigned for each core.

Prototype

ADI_INT_RESULT adi_int_CECInit(
 void *pMemory,
 const size_t MemorySize,
 u32 *pMaxEntries,
 void *pEnterCriticalArg

);

Arguments

Return Value

Return values include:

*pMemory This is the pointer to an area of memory to be used by the
Interrupt Manager.

MemorySize This is the size, in bytes, of memory being supplied for the Inter-
rupt Manager.

*pMaxEntries On return, this argument contains the number of secondary han-
dler entries that the Interrupt Manager can support given the
memory supplied.

*pEnterCriticalArg Parameter passed to the adi_int_EnterCriticalRegion.

ADI_INT_RESULT_SUCCESS Successfully initialized

Device Drivers and System Services Manual for Blackfin Processors 2-19

Interrupt Manager

adi_int_Terminate

Description

This function closes down the Interrupt Manager. All memory used by the
Interrupt Manager is freed up, all handlers are unhooked, and all Inter-
rupt Vector Groups that were enabled and controlled by the Interrupt
Manager are disabled.

Note that the adi_int_Terminate function does not alter the Sys-
tem Interrupt Controller settings. Should changes to the SIC be
required, the application should make the appropriate calls into the
relevant SIC control functions before calling adi_int_
Terminate().

Prototype

ADI_INT_RESULT adi_int_Terminate(void);

Arguments

none

Return Value

The function returns ADI_INT_RESULT_SUCCESS if successful. Any other
value indicates an error.

Interrupt Manager API Reference

2-20 Device Drivers and System Services Manual for Blackfin Processors

adi_int_CECHook

Description

This function instructs the Interrupt Manager to hook (insert) the given
interrupt handler into the interrupt handler chain for the given IVG.

On a return from this call, the core event controller is programmed such
that the given IVG is unmasked (enabled) and the system is properly con-
figured to service the interrupt via the Interrupt Manager’s built-in ISRs.
The ISRs then invoke the interrupt handler supplied by the caller.
Depending on the state of the NestingFlag parameter, the Interrupt Man-
ager installs its built-in interrupt service routine with interrupt nesting,
either enabled or disabled.

On the first call for a given IVG level, the Interrupt Manager registers its
built-in IVG interrupt service routine against that level and establishes the
supplied interrupt handler as the primary interrupt handler for the given
IVG level. Subsequent calls to adi_int_CECHook for the same IVG level
create a chain of secondary interrupt handlers for the IVG level. When the
interrupt for the IVG level is triggered, the primary interrupt handler is
first called, and then if present, each secondary interrupt handler is subse-
quently called.

The ClientArg parameter provided in the adi_int_CECHook function is
passed to the interrupt handler as an argument when the interrupt handler
is called in response to interrupt generation.

Prototype

ADI_INT_RESULT adi_int_CECHook(
 u32 IVG,
 ADI_INT_HANDLER_FN Handler,
 void *ClientArg,
 u32 NestingFlag
);

Device Drivers and System Services Manual for Blackfin Processors 2-21

Interrupt Manager

Arguments

Return Value

Return values include:

IVG This is the interrupt vector group number that is being
addressed.

Handler The client’s interrupt handler to be inserted into the
chain for the given IVG.

ClientArg A void * value that is passed to the interrupt handler.

NestingFlag This is the argument that selects whether nesting of inter-
rupts is allowed or disallowed for the IVG
(TRUE/FALSE).

ADI_INT_RESULT_SUCCESS The interrupt handler was successfully hooked into the
chain.

ADI_INT_RESULT_NO_MEMORY Insufficient memory is available to insert the handler
into the chain.

ADI_INT_RESULT_INVALID_IVG The IVG level is invalid.

Interrupt Manager API Reference

2-22 Device Drivers and System Services Manual for Blackfin Processors

adi_int_CECUnhook

Description

This function instructs the Interrupt Manager to unhook (remove) the
given interrupt handler from the interrupt handler chain for the given
IVG.

If the given interrupt handler is the only interrupt handler in the chain,
the CEC is programmed to disable (mask) the given IVG and the Inter-
rupt Manager built-in interrupt service routine is removed from the IVG
entry within Event Vector Table.

If the chain for the given IVG contains multiple interrupt handlers, the
given interrupt handler is simply purged from the chain. If the primary
interrupt handler is removed and there are secondary interrupt handlers in
the chain are present, one of the secondary interrupt handlers becomes the
primary interrupt handler.

Prototype

ADI_INT_RESULT adi_int_CECUnhook(
 u32 IVG,
 ADI_INT_HANDLER_FN Handler,
);

Arguments

Return Value

Return values include:

IVG The interrupt vector group number that is being
addressed.

Handler The client’s interrupt handler to be removed from the
chain for the given IVG.

Device Drivers and System Services Manual for Blackfin Processors 2-23

Interrupt Manager

ADI_INT_RESULT_SUCCESS The interrupt handler was successfully unhooked from
the chain.

ADI_INT_RESULT_INVALID_IVG The IVG level is invalid.

Interrupt Manager API Reference

2-24 Device Drivers and System Services Manual for Blackfin Processors

adi_int_ClearIMaskBits

Description

This function is used by the Interrupt Manager to clear bits in the IMASK
register. Though it can also be called by the application, the application
should not attempt to modify bits in the IMASK register that represent
interrupt vector groups that are under the control of the Interrupt
Manager.

The implementation of this function depends upon the operating environ-
ment. In the standalone version of the service, this function detects if the
processor is within a protected region of code (see the adi_int_Enter-
CriticalRegion and adi_int_ExitCriticalRegion functions). If it is, the
saved value of IMASK is updated accordingly and the current “live” IMASK
value is left unchanged. When the outermost adi_int_ExitCriticalRe-
gion function is called, the saved IMASK value with the new bit settings, is
restored. If upon entering this function, the processor is not within a pro-
tected region of code, the “live” IMASK register is updated accordingly.

Information on the implementation details for this function in other oper-
ating environments can be found in the file adi_int_xxx.h, located in the
blackfin/include/services/ directory, where xxx is the operating
environment.

Note that regardless of the implementation details, the API is consistent
from environment to operating environment. Changes to application soft-
ware are not required when code is moved to a different operating
environment.

Prototype

void adi_int_ClearIMASKBits(

 ADI_INT_IMASK BitsToClear

);

Device Drivers and System Services Manual for Blackfin Processors 2-25

Interrupt Manager

Arguments

Return Value

None

BitsToClear Replica of the IMASK register containing bits that are to
be cleared in the real IMASK register. A bit with a value of
‘1’ clears the corresponding bit in the IMASK register. A
bit with the value of ‘0’ leaves the corresponding bit in the
IMASK register unchanged.

Interrupt Manager API Reference

2-26 Device Drivers and System Services Manual for Blackfin Processors

adi_int_EnterCriticalRegion

Description

This function creates a condition that protects a critical region of code.
The companion function, adi_int_ExitCriticalRegion, removes the
condition. These functions should be used to bracket a section of code
that needs protection from other processing. These functions should be
used in pairs, sparingly and only when critical regions of code need
protecting.

The return value from this function should be passed to the corresponding
adi_int_ExitCriticalRegion function.

The actual condition that is created is dependent upon the operating envi-
ronment. In the standalone version of the service, this function effectively
disables interrupts, saving the current value of IMASK to a temporary loca-
tion. The adi_int_ExitCriticalRegion function restores the original
IMASK value. These functions employ a usage counter so that they can be
nested. When nested, the IMASK value is altered only at the outermost lev-
els. In the standalone version, the pArg parameter to the adi_int_
EnterCriticalRegion is meaningless.

Information on the implementation details for this function in other oper-
ating environments can be found in the file adi_int_xxx.h, located in the
blackfin/include/services/ directory, where xxx is the operating
environment.

Note that regardless of the implementation details, the API is consistent
from environment to operating environment and from processor to pro-
cessor. Application software does not need to change when moving to a
different operating environment or moving from one Blackfin derivative
to another.

Device Drivers and System Services Manual for Blackfin Processors 2-27

Interrupt Manager

Prototype

void *adi_int_EnterCriticalRegion(

 void *pArg

);

Arguments

Return Value

The return value from this function should always be passed to the corre-
sponding adi_int_ExitCriticalRegion function.

pArg Implementation dependent. Refer to the adi_int_xxx.h
file for details on this parameter for the xxx environment.

Interrupt Manager API Reference

2-28 Device Drivers and System Services Manual for Blackfin Processors

adi_int_ExitCriticalRegion

Description

This function removes the condition that was established by the adi_int_
EnterCriticalRegion to protect a critical region of code. These functions
should be used to bracket a section of code that needs protection from
other processing. These functions should be used sparingly and only when
critical regions of code need protecting.

The pArg parameter that is passed to this function should always be the
return value from the corresponding adi_int_EnterCriticalRegion
function.

See the adi_int_EnterCriticalRegion function for more information.

Prototype

void adi_int_ExitCriticalRegion(

 void *pArg

);

Arguments

Return Value

None

pArg The return value from the corresponding adi_int_
EnterCriticalRegion() function call.

Device Drivers and System Services Manual for Blackfin Processors 2-29

Interrupt Manager

adi_int_SICDisable

Description

This function configures the System Interrupt Controller to disable the
given interrupt and prevent it from being passed to the Core Event
Controller.

The adi_int_SICDisable function simply programs the System Interrupt
Mask register to mask interrupts from the given peripheral, thereby pre-
venting them from being passed to the Core Event Controller.

Prototype

ADI_INT_RESULT adi_int_SICDisable(
 const ADI_INT_PERIPHERAL_ID PeripheralID
);

Arguments

Return Value

PeripheralID This is the ADI_INT_PERIPHERAL_ID enumeration value
that identifies an interrupt source.

ADI_INT_RESULT_SUCCESS The System Interrupt Controller has been successfully
configured.

ADI_INT_RESULT_INVALID_
PERIPHERALID

The peripheral ID specified is invalid.

Interrupt Manager API Reference

2-30 Device Drivers and System Services Manual for Blackfin Processors

adi_int_SICEnable

Description

This function configures the System Interrupt Controller to enable the
given interrupt and allow it to be passed to the Core Event Controller.

The adi_int_SICEnable function simply programs the System Interrupt
Mask register to allow interrupts from the given peripheral to be passed to
the Core Event Controller.

Prototype

ADI_INT_RESULT adi_int_SICEnable(
 const ADI_INT_PERIPHERAL_ID PeripheralID,
);

Arguments

Return Value

Return values include:

PeripheralID This is the ADI_INT_PERIPHERAL_ED enumeration value
that identifies a peripheral interrupt source.

ADI_INT_RESULT_SUCCESS The System Interrupt Controller has been successfully
configured.

ADI_INT_RESULT_INVALID_
PERIPHERAL_ID

The peripheral ID specified is invalid.

Device Drivers and System Services Manual for Blackfin Processors 2-31

Interrupt Manager

adi_int_SICGetIVG

Description

This function detects the mapping of a peripheral interrupt source to an
IVG level. When called, this function reads the appropriate System Inter-
rupt Assignment register(s) of the given peripheral and stores the IVG
level to which the peripheral is mapped into the location provided by the
application. This function does not modify any parameters of the inter-
rupt controller.

Prototype

ADI_INT_RESULT adi_int_SICSetIVG(

 const ADI_INT_PERIPHERAL_ID PeripheralID,

 u32 *pIVG

);

Arguments

Return Value

The function returns ADI_INT_RESULT_SUCCESS if successful. Other possi-
ble return values include:

PeripheralID The ADI_INT_PERIPHERAL_ID enumeration value that
identifies a peripheral interrupt source

*pIVG The pointer to an unsigned 32-bit memory location into
which the function writes the IVG level to which the given
peripheral is mapped.

ADI_INT_RESULT_INVALID_
PERIPHERAL_ID

The peripheral ID specified is invalid.

ADI_INT_RESULT_INVALID_IVG The interrupt vector group level is invalid.

Interrupt Manager API Reference

2-32 Device Drivers and System Services Manual for Blackfin Processors

adi_int_SICInterruptAsserted

Description

This function determines if a given peripheral interrupt source is asserting
an interrupt. This function is typically called in an application’s interrupt
handler to determine if the peripheral in question is asserting an interrupt.
This function does not modify any parameters of the interrupt controller
but simply interrogates the appropriate interrupt status register(s).

Prototype

ADI_INT_RESULT adi_int_SICInterruptAsserted(

 const ADI_INT_PERIPHERAL_ID PeripheralID

);

Arguments

Return Value

The function returns one of the following values:

PeripheralID The ADI_INT_PERIPHERAL_ID enumeration value that
identifies a peripheral interrupt source.

ADI_INT_RESULT_INVALID_
PERIPHERAL_ID

The peripheral ID specified is invalid.

ADI_INT_RESULT_ASSERTED The specified peripheral is asserting an interrupt.

ADI_INT_RESULT_NOT_ASSERTED The specified peripheral is not asserting an interrupt.

Device Drivers and System Services Manual for Blackfin Processors 2-33

Interrupt Manager

 adi_int_SICSetIVG

Description

This function sets the mapping of a peripheral interrupt source to an IVG
level. When called, this function modifies the appropriate System Inter-
rupt Assignment register(s) of the given peripheral to the specified IVG
level. This function does not enable or disable interrupts.

Prototype

ADI_INT_RESULT adi_int_SICSetIVG(

 const ADI_INT_PERIPHERAL_ID PeripheralID,

 const u32 IVG

);

Arguments

Return Value

The function returns ADI_INT_RESULT_SUCCESS, if successful. Other possi-
ble return values include:

PeripheralID The ADI_INT_PERIPHERAL_ID enumeration value that
identifies a peripheral interrupt source

IVG The interrupt vector group that the peripheral to which
the peripheral is being assigned.

ADI_INT_RESULT_INVALID_
PERIPHERAL_ID

The peripheral ID specified is invalid.

ADI_INT_RESULT_INVALID_IVG The interrupt vector group level is invalid.

Interrupt Manager API Reference

2-34 Device Drivers and System Services Manual for Blackfin Processors

adi_int_SetIMaskBits

Description

This function is used by the Interrupt Manager to set bits in the IMASK
register. Though it can also be called by the application, the application
should not attempt to modify bits in the IMASK register that represent
interrupt vector groups that are under the control of the Interrupt
Manager.

The implementation of this function is dependent upon the operating
environment. In the standalone version of the service, this function
detects if the processor is within a protected region of code (see the adi_
int_EnterCriticalRegion and adi_int_ExitCriticalRegion functions).
If it is, the saved value of IMASK is updated accordingly and the current
“live” IMASK value is left unchanged. When the outermost adi_int_Exit-
CriticalRegion function is called, the saved IMASK value, with the new bit
settings, is restored. If upon entering this function the processor is not
within a protected region of code, the “live” IMASK register is updated
accordingly.

Information on the implementation details for this function in other oper-
ating environments can be found in the file adi_int_xxx.h, located in the
blackfin/include/services/ directory, where xxx is the operating
environment.

Note that regardless of the implementation details, the API is consistent
from environment to operating environment. Application software does
not have to change when moving to a different operating environment.

Prototype

void adi_int_SetIMASKBits(

 ADI_INT_IMASK BitsToSet

);

Device Drivers and System Services Manual for Blackfin Processors 2-35

Interrupt Manager

Arguments

Return Value

None

BitsToSet Replica of the IMASK register containing bits that are to
be set in the real IMASK register. A bit with a value of ‘1’
sets the corresponding bit in the IMASK register. A bit
with the value of ‘0’ leaves the corresponding bit in the
IMASK register unchanged.

Interrupt Manager API Reference

2-36 Device Drivers and System Services Manual for Blackfin Processors

adi_int_SICWakeup

Description

This function configures the System Interrupt Controller Wakeup register
to enable or disable the given peripheral interrupt from waking up the
core processor.

The adi_int_SICWakeup function simply programs the System Interrupt
Controller Wakeup register accordingly. The actual servicing of interrupts
is not affected by this function.

Prototype

ADI_INT_RESULT adi_int_SICWakeup(
 const ADI_INT_PERIPHERAL_ID PeripheralID,
 u32 WakeupFlag
);

Arguments

Return Value

Return values include:

PeripheralID This is the ADI_INT_PERIPHERAL_ID enumeration value
that identifies a peripheral interrupt source.

WakeupFlag Enables/disables waking up the core(s) upon triggering of
the peripheral interrupt (TRUE/FALSE).

ADI_INT_RESULT_SUCCESS The System Interrupt Controller has been successfully
configured.

ADI_INT_RESULT_INVALID_
PERIPHERAL_ID

The peripheral ID specified is invalid.

Device Drivers and System Services Manual for Blackfin Processors 3-1

3 POWER MANAGEMENT
MODULE

This chapter describes the Power Management (PM) module that sup-
ports Dynamic Power Management of Blackfin processors.

This chapter contains:

• “Introduction” on page 3-2

• “PM Module Operation – Getting Started” on page 3-3

• “Power Management API Reference” on page 3-6

• “Public Data Types and Enumerations” on page 3-30

• “PM Module Macros” on page 3-51

Introduction

3-2 Device Drivers and System Services Manual for Blackfin Processors

Introduction
The Power Management (PM) module provides access to all aspects of
Dynamic Power Management:

• Dynamic switching from one operating mode to another: Full-On,
Active, Sleep, Deep Sleep and Hibernate.

• Dynamic setting of voltage levels and clock frequencies to ensure
that an application can be tuned to achieve the best performance
while minimizing power consumption.

• When coupled with the EBIU module*, it enables the SDRAM set-
tings to be adjusted upon changes to the system clock to ensure
that the best performance is obtained for the complete system.

The module supports two strategies for setting the core and system clock
frequencies:

• For a given voltage level, the core clock (CCLK) is set to the highest
available frequency. The system clock (SCLK) is set accordingly.

• For a given combination of core and system clock frequencies, the
valid values nearest to the chosen ones are used and the voltage
level of the processor adjusted accordingly.

In both cases validity checks are performed at all stages, making it impos-
sible to stall or harm the processor.

“PM Module Operation – Getting Started” describes the basic operating
stages required to use the Power Management module.

* See Chapter 3, “External Bus Interface Unit Module” for more information.

Device Drivers and System Services Manual for Blackfin Processors 3-3

Power Management Module

The Power Management Module uses an unambiguous naming conven-
tion to safeguard against conflicts with other software libraries provided
by Analog Devices, Inc. or other companies. To this end, all enumeration
values and typedefs use the ADI_PWR_ prefix, while functions and global
variables use the lower case, adi_pwr_ equivalent.

Two versions of the library exist for each processor. These correspond to
the debug and release configurations in VisualDSP++ Release 4.0. In addi-
tion to the usual defaults for the debug configuration, the API functions
perform checks on the arguments passed and report appropriate error
codes, as required. In the release version of the library, most functions
return one of two result codes: ADI_PWR_RESULT_SUCCESS on successful
completion, or ADI_PWR_RESULT_CALL_IGNORED if the PM module has not
been initialized prior to the function call.

PM Module Operation – Getting Started
A following example illustrates how to use the PM module to configure a
600Mz ADSP-BF533 processor on an EZ-KIT Lite board to run at the
requested core and system clock frequencies or to minimize power con-
sumption by pegging the voltage level at 0.95 V.

Step 1:
Initialize the module by setting the parameters for the hardware configura-
tion used. In the following example it is assumed that the ADSP-BF533
EZ-KIT Lite (Rev 1.3) is to be configured. The simplest way is to specify
the EZ-KIT board as follows:

ADI_PWR_COMMAND_PAIR ezkit_pwr[] = {

 // ADSP-BF533 EZ-KIT LITE REV 1.3

 { ADI_PWR_CMD_SET_EZKIT, ADI_PWR_EZKIT_BF533_600MHz },

 { ADI_PWR_CMD_END, 0 }

};
adi_pwr_Init(ezkit_pwr);

PM Module Operation – Getting Started

3-4 Device Drivers and System Services Manual for Blackfin Processors

To illustrate what is required for non EZ-Kit boards, the above command
table is included an abbreviated form of the following code:

ADI_PWR_COMMAND_PAIR ezkit_pwr[] = {

 /* 600Mhz ADSP-BF533 variant *

 { ADI_PWR_CMD_SET_PROC_VARIANT,(void*)ADI_PWR_PROC_

BF533SKBC600 },

 /* in MBGA packaging, as on all EZ-KITS */

 { ADI_PWR_CMD_SET_PACKAGE, (void*)ADI_PWR_PACKAGE_MBGA },

 /* External Voltage supplied to the */

 /*voltage regulator is 3.3V */

 { ADI_PWR_CMD_SET_VDDEXT, (void*)ADI_PWR_VDDEXT_330 },

 /* The CLKIN frequency */

(ADI_PWR_CLKIN_EZKIT=27Mhz */

 { ADI_PWR_CMD_SET_CLKIN, (void*)ADI_PWR_CLKIN_

EZKIT_REV_1_5 },

 /* command to terminate the table */

 { ADI_PWR_CMD_END, 0 }

};

adi_pwr_Init(ezkit_pwr);

Step 2:
If used in conjunction with the EBIU controller to adjust SDRAM set-
tings, the EBIU module is initialized (for EZ-KIT) with the following call:

ADI_EBIU_COMMAND_PAIR ezkit_ebiu[] = {

 { ADI_EBIU_CMD_SET_EZKIT,(void*)ADI_EBIU_EZKIT_BF533 },

 { ADI_EBIU_CMD_END, 0 }

};

adi_ebiu_Init(

 ezkit_ebiu, // default is EZ-KIT

 FALSE // Do not adjust refresh settings

);

Device Drivers and System Services Manual for Blackfin Processors 3-5

Power Management Module

Step 3:
Decide on which power management strategy to implement. For example,
the following code segments demonstrate how to configure the PM mod-
ule for optimal speed or optimal power consumption.

Optimal Speed

The following statement requests that the PM module set the core and
system clock frequencies to the maximum values possible:

adi_pwr_SetFreq(
 0, // Core clock frequency (MHz)
 0, // System clock frequency (MHz)
 ADI_PWR_DF_ON // Do not adjust the PLL input divider
);

Optimal Power Consumption
The following statement requests that the PM module set the core and
system clock frequencies to the maximum that can be sustained at a volt-
age level of 0.85 V:

adi_pwr_SetMaxFreqForVolt(ADI_PWR_VLEV_085);

Power Management API Reference

3-6 Device Drivers and System Services Manual for Blackfin Processors

Power Management API Reference
This section provides descriptions of the PM module’s Application Pro-
gramming Interface (API) functions.

Notation Conventions
The reference pages for the API functions use the following format:

Name and purpose of the function

Description – Function specification

Prototype – Required header file and functional prototype

Arguments – Description of function arguments

Return Value – Description of function return values

Device Drivers and System Services Manual for Blackfin Processors 3-7

Power Management Module

adi_pwr_AdjustFreq

Description

This function allows the core and system clocks to be modified by specify-
ing the core and system clock divider ratios, CSEL and SSEL, in the PLL_DIV
register. The processor is not idled.

Prototype

ADI_PWR_RESULT adi_pwr_AdjustFreq(
 const ADI_PWR_CSEL csel,
 const ADI_PWR_SSEL ssel
);

Arguments

Return Value

In the debug variant of the library, the function adi_pwr_AdjustSpeed
returns one of the following result codes. Otherwise the function returns
ADI_PWR_RESULT_SUCCESS.

csel An ADI_PWR_CSEL value specifies how the Voltage Core
Oscillator (VCO) frequency is to be divided to obtain a new
Core Clock frequency (see “ADI_PWR_CSEL” on
page 3-35). The divider value cannot exceed the ssel value.

ssel An ADI_PWR_SSEL value specifies how the VCO frequency is
to be divided to obtain a new System Clock frequency (see
“ADI_PWR_SSEL” on page 3-44).

ADI_PWR_RESULT_SUCCESS This process completed successfully.

ADI_PWR_RESULT_CALL_
IGNORED

The PM module has not been initialized.

ADI_PWR_RESULT_INVALID_
CSEL

An invalid value for CSEL has been specified.

Power Management API Reference

3-8 Device Drivers and System Services Manual for Blackfin Processors

ADI_PWR_RESULT_INVALID_
SSEL

An invalid value for SSEL has been specified.

ADI_PWR_INVALID_CSEL_
SSEL_COMBINATION

The core clock divider is greater that the System clock
divider value, or both ADI_PWR_CSEL_NONE and ADI_PWR_
SSEL_NONE are specified.

Device Drivers and System Services Manual for Blackfin Processors 3-9

Power Management Module

adi_pwr_Control

Description

This function enables the Dynamic Power Management registers to be
configured or queried according to command-value pairs
(“ADI_PWR_COMMAND_PAIR” on page 3-35), specified in one of
three ways:

1. A single command-value pair is passed.
adi_pwr_Control(
 ADI_PWR_CMD_SET_INPUT_DELAY,
 (void*)ADI_PWR_INPUT_DELAY_ENABLE,

);

2. A single command-value pair structure is passed.

ADI_PWR_COMMAND_PAIR cmd = {
 ADI_PWR_CMD_SET_INPUT_DELAY,
 (void*)ADI_PWR_INPUT_DELAY_ENABLE,

};
adi_pwr_Control(ADI_PWR_CMD_PAIR,(void*)&cmd);

3. A table of ADI_PWR_COMMAND_PAIR structures is passed. The last entry in
the table must be ADI_PWR_CMD_END.

ADI_PWR_COMMAND_PAIR table[] = {
 { ADI_PWR_CMD_SET_INPUT_DELAY, (void*)ADI_PWR_INPUT_DELAY_

ENABLE

 { ADI_PWR_CMD_SET_OUTPUT_DELAY, (void*)ADI_PWR_OUTPUT_DELAY_

ENABLE

 { ADI_PWR_CMD_END, 0}

};
adi_pwr_Control(
 ADI_PWR_CMD_TABLE,
 (void*)table

);

Power Management API Reference

3-10 Device Drivers and System Services Manual for Blackfin Processors

Refer to ADI_PWR_COMMAND on page 3-31 and “Public Data Types and Enu-
merations” on page 3-30 for the complete list of commands and associated
values.

Prototype

ADI_PWR_RESULT adi_pwr_Control(
 ADI_PWR_COMMAND command,

 void *Value

);

Arguments

Return Value

In debug mode the adi_pwr_Control function returns one of the following
values. Otherwise, ADI_PWR_RESULT_SUCCESS is returned.

Command An ADI_PWR_COMMAND enumeration value specifies the
meaning of the associated value argument.

Value This is the required value (see “ADI_PWR_COMMAND”
on page 3-31).

ADI_PWR_RESULT_SUCCESS This function completed successfully.

ADI_PWR_RESULT_BAD_COM-
MAND

An invalid command has been specified.

ADI_PWR_RESULT_CALL_
IGNORED

The PM module has not been initialized.

ADI_PWR_RESULT_INVALID_
INPUT_DELAY

The input delay value is invalid.

ADI_PWR_RESULT_INVALID_
OUTPUT_DELAY

The output delay value is invalid.

ADI_PWR_RESULT_INVALID_
LOCKCNT

The PLL lock count value is invalid.

Device Drivers and System Services Manual for Blackfin Processors 3-11

Power Management Module

adi_pwr_GetConfigSize

Description

This function returns the number of bytes required to save the current
configuration data. This value is also available via the ADI_PWR_SIZEOF_
CONFIG macro.

The return value of adi_pwr_GetConfigSize as well the ADI_PWR_SIZEOF_
CONFIG macro incorporate the size of the EBIU Module configuration,
whether the latter is initialized or not.

Prototype

size_t adi_pwr_GetConfigSize(void);

Return Value

The size of the configuration structure.

Power Management API Reference

3-12 Device Drivers and System Services Manual for Blackfin Processors

adi_pwr_GetFreq

Description

This function returns the current values of the CCLK, SCLK and Voltage
Core Oscillator (VCO) frequencies

Prototype

ADI_PWR_RESULT adi_pwr_GetFreq(
 u32 *fcclk,
 u32 *fsclk,
 u32 *fvco);

Arguments

Return Value

In the debug variant of the library, the function adi_pwr_GetFreq returns
one of the following result codes. Otherwise the function returns ADI_
PWR_RESULT_SUCCESS.

fcclk This is an address of location to store the current CCLK
value (MHz).

fsclk This is an address of location to store the current SCLK value
(MHz).

fvco This is an address of location to store the VCO frequency
(MHz).

ADI_PWR_RESULT_SUCCESS This process completed successfully.

ADI_PWR_RESULT_CALL_
IGNORED

The PM module has not been initialized.

Device Drivers and System Services Manual for Blackfin Processors 3-13

Power Management Module

adi_pwr_GetPowerMode

Description

This function returns the current power mode of the processor (only
applicable for Full-on and Active modes).

Prototype

ADI_PWR_MODE adi_pwr_GetPowerMode(void);

Return Value

The current power mode as an ADI_PWR_MODE value.

adi_pwr_GetPowerSaving

Description

This function calculates the power saving value for the current PLL and
voltage regulator settings, as per the data sheet formulae with the time
ratio set to unity, and the nominal values as per the maximum possible
(that is, at VLEV=1.3V).

Prototype

u16 adi_pwr_GetPowerSaving(void);

Return Value

The percentage power saving value.

Power Management API Reference

3-14 Device Drivers and System Services Manual for Blackfin Processors

adi_pwr_Init

Description

This function initializes the Power Management module. The following
values are required to be set for successful initialization:

These are communicated to the adi_pwr_Init function by passing a
pointer to a table of command-value pairs, terminated with the ADI_PWR_
CMD_END command.

For example, the following ADI_PWR_COMMAND_PAIR table gives the EZ-KIT
Lite values:

ADI_PWR_COMMAND_PAIR ezkit_init[] = {
 { ADI_PWR_CMD_SET_PROC_VARIANT, ADI_PWR_PROC_BF533SKBC600 },
 { ADI_PWR_CMD_SET_PACKAGE, ADI_PWR_PACKAGE_MBGA },

Processor variant An ADI_PWR_PROC_KIND value describes the processor variant
(see “ADI_PWR_PROC_KIND” on page 3-41).

Package kind An ADI_PWR_PACKAGE_KIND value describes the packaging type
of the processor (see“ADI_PWR_PACKAGE_KIND” on
page 3-39).

Core voltage (VDDINT) An ADI_PWR_VLEV value specifying the internal voltage, applied
to the core by an external voltage regulator.The internal voltage
regulator is bypassed. Its absence in the command table implies
that the internal regulator is to be used.
An external voltage regulator is required for the
ADSP-BF533SKBC750 processor, as the internal voltage
regulator cannot supply the 1.4V required for the processor to
run at 750 MHz.

External voltage (VDDEXT) An ADI_PWR_VDDEXT value specifies the external voltage
supplied to the voltage regulator. This value, when coupled with
the packaging, determines the maximum system clock (SCLK)
frequency available.

CLKIN Frequency of the external clock oscillator in MHz supplied to the
processor. Macros are available for a range of input clocks. For
example, the EZ-KIT Lite value is ADI_PWR_CLKIN_EZKIT (see
“ADI_PWR_VDDEXT” on page 3-45).

Device Drivers and System Services Manual for Blackfin Processors 3-15

Power Management Module

 { ADI_PWR_CMD_SET_VDDEXT, ADI_PWR_VDDEXT_330 },
 { ADI_PWR_CMD_SET_CLKIN, ADI_PWR_CLKIN_EZKIT },
 { ADI_PWR_CMD_END, 0 }
};

The following table lists valid command-value pairs.

ADI_PWR_CMD_SET_CCLK_TABLE The address of a table containing ADI_PWR_NUM_
VLEVS values of type u16 detailing the maximum
CCLK frequency for each ADI_PWR_VLEV value. These
values will be used instead of the data sheet values.

ADI_PWR_CMD_SET_EZKIT An ADI_PWR_EZKIT value to identify the EZ-KIT for
which the power management is to be configured. This
command establishes all the required values, as detailed
above (see “ADI_PWR_EZKIT” on page 3-37]).

ADI_PWR_CMD_SET_PROC_VARIANT An ADI_PWR_PROC_KIND value specifies the processor
variant. (Mandatory) See “ADI_PWR_PROC_KIND”
on page 3-41.

ADI_PWR_CMD_SET_PACKAGE An ADI_PWR_PACKAGE_KIND value describes the
packaging type of the processor. (Mandatory) See
“ADI_PWR_PACKAGE_KIND” on page 3-39.

ADI_PWR_CMD_SET_CLKIN A u16 value specifies the external clock frequency,
CLKIN, supplied to the processor. (Mandatory).

ADI_PWR_CMD_SET_VDDINT An ADI_PWR_VLEV value specifies the Core Voltage
Level. This should only be passed to adi_pwr_Init if
an external voltage regulator is to be used, as its
presence instructs the module to bypass the internal
regulator (see “ADI_PWR_VLEV” on page 3-46).

ADI_PWR_CMD_SET_VDDEXT An ADI_PWR_VDDEXT value specifies the external
voltage level applied to the internal voltage regulator.
(Mandatory) See “ADI_PWR_VDDEXT” on
page 3-45.

ADI_PWR_CMD_SET_IVG An interrupt_kind value (see exception.h)
specifies the IVG level for the PLL_WAKEUP event.

Power Management API Reference

3-16 Device Drivers and System Services Manual for Blackfin Processors

The adi_pwr_Init function can only be called once. Subsequent calls to adi_
pwr_Init are ignored with the ADI_PWR_RESULT_CALL_IGNORED result code
returned.

Prototype

ADI_EBIU_RESULT adi_pwr_Init(
 ADI_PWR_COMMAND_PAIR *table
);

Arguments

ADI_PWR_CMD_SET_INPUT_DELAY An ADI_PWR_INPUT_DELAY value specifies whether or
not to add approximately 200ps of delay to the time
when inputs are latched on the external memory inter-
face (see “ADI_PWR_INPUT_DELAY” on
page 3-37).

ADI_PWR_CMD_SET_OUTPUT_DELAY An ADI_PWR_OUTPUT_DELAY value specifies whether or
not to add approximately 200ps of delay to external
memory output signals (see “ADI_PWR_OUTPUT_
DELAY” on page 3-37).

ConfigData The address of a table of command-value pairs as defined by
“ADI_PWR_COMMAND_PAIR” on page 3-35 and
“Public Data Types and Enumerations” on page 3-30.
The last command in the table must be the ADI_EBIU_CMD_
END command.

Device Drivers and System Services Manual for Blackfin Processors 3-17

Power Management Module

Return Value

In the debug variant of the library, adi_pwr_Init returns the following
results codes. Otherwise either the value of ADI_PWR_RESULT_SUCCESS is
returned, or the value of ADI_PWR_RESULT_CALL_IGNORED is returned if the
PM module has already been initialized.

ADI_PWR_RESULT_SUCCESS This function completed successfully.

ADI_PWR_RESULT_BAD_COM-
MAND

An invalid command has been specified.

ADI_PWR_RESULT_CALL_
IGNORED

The module has already been initialized.

ADI_PWR_RESULT_INVALID_
VLEV

An Invalid core voltage level has been specified.

ADI_PWR_RESULT_INVALID_
VDDEXT

An Invalid external voltage level has been specified.

ADI_PWR_RESULT_INVALID_
PROCESSOR

The processor type specified is invalid.

ADI_PWR_RESULT_INVALID_
IVG

The IVG level supplied is invalid.

ADI_PWR_RESULT_INVALID_
INPUT_DELAY

The input delay value is invalid.

ADI_PWR_RESULT_INVALID_
OUTPUT_DELAY

The output delay value is invalid.

ADI_PWR_RESULT_INVALID_
LOCKCNT

The PLL lock count value is invalid.

ADI_PWR_RESULT_INVALID_
EZKIT

Invalid EZ-Kit type specified.

Power Management API Reference

3-18 Device Drivers and System Services Manual for Blackfin Processors

adi_pwr_LoadConfig

Description

This function restores the current configuration values from the memory
location pointed to by the hConfig argument. The PLL controller and
Voltage Regulator are reprogrammed. If the EBIU Module is initialized,
its configuration is also loaded and the SDRAM Controller programmed.

Prototype

ADI_PWR_RESULT adi_pwr_LoadConfig(
 const ADI_PWR_CONFIG_HANDLE hConfig,
 const size_t szConfig
);

Arguments

Return Value

In the debug variant of the library, adi_pwr_Init returns the following
results codes. Otherwise, the value of ADI_PWR_RESULT_SUCCESS is
returned.

hConfig This is the address of the memory area from which the
current configuration is to be restored.

szConfig This is the number of bytes available at the given address.
This value must be greater than or equal to the adi_pwr_
GetConfigSize() return value.

ADI_PWR_RESULT_SUCCESS This function completed successfully.

ADI_PWR_RESULT_NO_MEMORY The szConfig value is insufficient.

ADI_PWR_RESULT_FAILED The address of hConfig is zero.

ADI_PWR_RESULT_CALL_
IGNORED

The PM module has not been initialized.

Device Drivers and System Services Manual for Blackfin Processors 3-19

Power Management Module

adi_pwr_Reset

Description

This function resets the PLL controller to its hardware reset values.

Prototype
 void adi_pwr_Reset(void);

Arguments

None

Return Value

None

Power Management API Reference

3-20 Device Drivers and System Services Manual for Blackfin Processors

adi_pwr_SaveConfig

Description

This function stores the current configuration values into the memory
area pointed to by the hConfig argument. If the EBIU Module is initial-
ized, its configuration is also saved; otherwise, the appropriate fields are
undefined.

Prototype

ADI_PWR_RESULT adi_pwr_SaveConfig(
 const ADI_PWR_CONFIG_HANDLE hConfig,
 const size_t szConfig
);

Arguments

Return Value

In the debug variant of the library, adi_pwr_Init returns the following
results codes. Otherwise, the value of ADI_PWR_RESULT_SUCCESS is
returned.

hConfig The address of the memory location into which the current
configuration is to be stored.

szConfig Number of bytes available at the given address. The value
must be greater than or equal to the adi_pwr_GetConfig-
Size() return value.

ADI_PWR_RESULT_SUCCESS This function completed successfully.

ADI_PWR_RESULT_NO_MEMORY The szConfig value is insufficient.

ADI_PWR_RESULT_FAILED The address of hConfig is zero.

ADI_PWR_RESULT_CALL_
IGNORED

The PM module has not been initialized.

Device Drivers and System Services Manual for Blackfin Processors 3-21

Power Management Module

adi_pwr_SetFreq

Description

This function sets the PLL controller to provide CCLK and SCLK values as
close as possible to the requested values, in MHz. If the voltage regulator
is not disabled, it is adjusted (where necessary) to provide the minimum
voltage that can sustain the requested frequencies.

The processor is idled to effect the changes.

This function always finds a solution where the CSEL divider in the
PLL_DIV register is unity. If the PLL Input Divider is requested,
then the difference between the requested and obtained values is
minimized.

To determine the values set by this function, use adi_pwr_GetFreq.

Prototype

ADI_PWR_RESULT adi_pwr_SetFreq(
 const u32 fcclk,
 const u32 fsclk,
 const ADI_PWR_DF df);

Arguments

fcclk This is the requested CCLK value in MHz. If this is set to zero,
the adi_pwr_SetFreq function gives priority to matching
the given SCLK frequency and calculates and sets a CCLK
frequency as close as possible to the maximum possible for
the current voltage level.

fsclk This is the requested SCLK value in MHz.

df An ADI_PWR_DF enumeration value indicates whether or not
the PLL input divider is to be enabled (see “ADI_PWR_DF”
on page 3-36). If enabled, then it can lead to lower power
dissipation. Passing a value of ADI_PWR_DF_NONE indicates
that the routine should decide whether to enable or disable it.

Power Management API Reference

3-22 Device Drivers and System Services Manual for Blackfin Processors

Return Value

In the debug variant of the library, the adi_pwr_SetFreq function returns
one of the following result codes. Otherwise it returns ADI_PWR_RESULT_
SUCCESS.

ADI_PWR_RESULT_SUCCESS This process completed successfully.

ADI_PWR_RESULT_IGNORED The PM module has not been initialized.

Device Drivers and System Services Manual for Blackfin Processors 3-23

Power Management Module

adi_pwr_SetMaxFreqForVolt

Description

This function sets the Voltage Regulator control register, VR_CTL, with the
required voltage level and adjusts the processor’s CCLK and SCLK values to
the maximum sustainable level.

The processor is idled to effect the changes.

Prototype

ADI_PWR_RESULT adi_pwr_SetMaxFreqForVolt(
 const ADI_PWR_VLEV vlev
);

Arguments

Return Value

In debug variant of the library, the adi_pwr_SetMaxFreqForVolt function
returns the following result codes. Otherwise, ADI_PWR_RESULT_SUCCESS is
returned.

vlev The required voltage level is set as an ADI_PWR_VLEV
enumeration value (see “ADI_PWR_VLEV” on page 3-46).

ADI_PWR_RESULT_INVALID_
VR_VLEV

The vlev value is invalid.

ADI_PWR_RESULT_VR_
BYPASSED

The voltage regulator is bypassed. A call to adi_dma_Set-
VoltageRegulator with a non-zero switching frequency
value is required prior to this call (see “adi_pwr_SetVoltage-
Regulator” on page 3-26).

ADI_PWR_RESULT_CALL_
IGNORED

This process completed successfully.

Power Management API Reference

3-24 Device Drivers and System Services Manual for Blackfin Processors

adi_pwr_SetPowerMode

Description

This function sets the Power mode of the processor. There are five modes:

• Full-On – The processor core clock, CCLK, and system clock, SCLK,
run at the frequencies set via adi_pwr_SetFreq or adi_pwr_Set-
VoltageRegulator and full DMA is enabled.

• Active – The PLL is bypassed so that the processor core clock and
system clock run at the CLKIN input clock frequency. DMA access
is available to configured L1 memories appropriately.

• Sleep – The core processor is idled. The system clock continues to
run at the speed set via adi_pwr_SetFreq or adi_pwr_SetVoltage-
Regulator and DMA is restricted to external memory.

• Deep Sleep – The processor core and all peripherals except the
Real-Time Clock (RTC) are disabled. DMA is not supported in
this mode.

SDRAM is set to Self-Refresh Mode. The voltage regulator is pow-
ered up on RTC interrupt or a hardware reset event. In both cases
the core reset sequence is initiated.

• Hibernate - The internal voltage regulator is powered down.
SDRAM is set to Self-Refresh Mode. The voltage regulator is pow-
ered up on hardware reset.

IMPORTANT, please note that until SDRAM is properly config-
ured and the refresh rate appropriate, data held in SDRAM will
decay! This only applies to exiting Hibernate mode or Deep Sleep
by a hardware reset event. For ADSP-BF531, ADSP-BF532 and
ADSP-BF533 cores, the SCKE pin on the processor is always
asserted on reset, causing the SDRAM to exit self-refresh mode.
This behavior is a constraint of PC-133 compliance. For the
ADSP-BF534, ADSP-BF536 and ADSP-BF537 cores, this restric-

Device Drivers and System Services Manual for Blackfin Processors 3-25

Power Management Module

tion can be circumvented by enabling the CKELOW bit in the VR_CTL
register (see “adi_pwr_SetVoltageRegulator” on page 3-26). This
can also be achieved by inserting the following command value pair
to the table to be passed to the adi_pwr_Init function:

{ ADI_PWR_CMD_SET_PC133_COMPLIANCE, 0 }

Prototype

ADI_PWR_RESULT adi_pwr_SetPowerMode(
 const ADI_PWR_MODE mode);

Arguments

Return Value

In the debug variant of the library, the function adi_pwr_SetPowerMode
returns one of the following result codes. Otherwise the function returns
ADI_PWR_RESULT_SUCCESS.

mode The ADI_PWR_MODE value indicates the state to which the
processor is to be transitioned (see “ADI_PWR_MODE” on
page 3-38).

ADI_PWR_RESULT_SUCCESS This process completed successfully.

ADI_PWR_RESULT_CALL_
IGNORED

The PM module has not been initialized.

ADI_PWR_RESULT_INVALID_
MODE

Either an incorrect mode has been requested or the requested
mode cannot be reached from the current mode.

Power Management API Reference

3-26 Device Drivers and System Services Manual for Blackfin Processors

adi_pwr_SetVoltageRegulator

Description

This function sets the Voltage Regulator control register, VR_CTL, with one
or more of the following fields.

The following fields are applicable to all Blackfin processors.

VLEV This is the required voltage level as an ADI_PWR_VLEV
enumeration value (see “ADI_PWR_VLEV” on page 3-46).

FREQ This is the required voltage regulator switching oscillator
frequency as an ADI_PWR_VR_FREQ enumeration value (see
“ADI_PWR_VR_FREQ” on page 3-50). Please note,
supply ADI_PWR_VR_FREQ_POWERDOWN to bypass the
onboard voltage regulator.

GAIN This is the required gain value as an ADI_PWR_VR_GAIN
enumeration value (see “ADI_PWR_VR_GAIN” on
page 3-50).

WAKE An ADI_PWR_VR_WAKE enumeration value indicating
whether the voltage regulator can be awakened from power
down upon an interrupt from the Real Time Clock or a low
going edge on the RESET# pin (see “ADI_PWR_VR_
WAKE” on page 3-51).

The following fields are applicable only to the ADSP-BF534, ADSP-BF536 and ADSP-BF537
processors:

PHYWE An ADI_PWR_VR_PHYWE enumeration value indicating
whether the voltage regulator can be awakened from power
down by activity on the Ethernet PHY (see “ADI_PWR_
VR_PHYWE” on page 3-50).

CANWE An ADI_PWR_VR_CANWE enumeration value indicating
whether the voltage regulator can be awakened from power
down by activity on the CAN bus (see “ADI_PWR_VR_
CANWE” on page 3-47).

Device Drivers and System Services Manual for Blackfin Processors 3-27

Power Management Module

These values are communicated to the adi_pwr_SetVoltageRegulator
function by passing either a single command-value pair or a sequence of
pairs in a table terminated with the ADI_PWR_CMD_END command, in the
same way as for the adi_pwr_Control function. For more detailed infor-
mation, refer to “adi_pwr_Control” on page 3-9.

For example, to bypass the built-in voltage regulator, this code could be
used.

adi_pwr_SetVoltageRegulator(ADI_PWR_SET_VR_FREQ, (void*) ADI_

PWR_VR_FREQ_POWERDOWN);

The following table defines the command-value pairs that can be used
with the adi_pwr_SetVoltageRegulator function. Use of any other pairs is
invalid.

CLKBUFOE An ADI_PWR_VR_CLKBUFOE enumeration value to govern
whether or not other devices, most likely the Ethernet PHY,
are to be clocked by the input clock, CLKIN.This bit should
be set if the Ethernet PHY is to be used on the ADSP-BF537
EZ-Kit (see “ADI_PWR_VR_CLKBUFOE” on page 3-49).

CKELOW An ADI_PWR_VR_CKELOW enumeration value to govern
whether to protect against the default reset state behavior of
setting the EBIU pins to their inactive state. This bit should
be set if the SDRAM is to be placed into self-refresh mode
while the processor is in Hibernate state (see “ADI_PWR_
VR_CKELOW” on page 3-48).

Command Associated data value

The following commands are applicable to all Blackfin processors.

ADI_PWR_CMD_END The data value is ignored as the command simply marks the
end of a table of command pairs.

ADI_PWR_CMD_PAIR Used to tell adi_pwr_SetVoltageRegulator that a single
command pair is being passed.

ADI_PWR_CMD_TABLE Used to tell adi_pwr_SetVoltageRegulator that a table of
command pairs is being passed.

Power Management API Reference

3-28 Device Drivers and System Services Manual for Blackfin Processors

The processor’s CCLK and SCLK frequencies are not adjusted. The pro-
cessor is idled to effect the changes, except in the case of the ADI_PWR_CMD_
SET_VR_WAKE ADI_PWR_CMD_SET_VR_CANWE commands. If the requested
voltage level is insufficient to sustain the current frequency values, the
function return an error without amending any settings.

ADI_PWR_CMD_SET_VR_VLEV An ADI_PWR_VLEV value specifying the Voltage Level
required of the voltage regulator (see “ADI_PWR_VLEV” on
page 3-46).

ADI_PWR_CMD_SET_VR_FREQ An ADI_PWR_VR_FREQ value specifying the required voltage
regulator switching oscillator frequency (see “ADI_PWR_
VR_FREQ” on page 3-50). Use the ADI_PWR_VR_FREQ_
POWERDOWN value to bypass the onboard voltage regulator.

ADI_PWR_CMD_SET_VR_GAIN An ADI_PWR_VR_GAIN value specifying the internal loop
gain of the switching regulator loop (see “ADI_PWR_VR_
GAIN” on page 3-50).

ADI_PWR_CMD_SET_VR_WAKE An ADI_PWR_VR_WAKE value indicating whether to
enable/disable the WAKE bit (see “ADI_PWR_VR_WAKE”
on page 3-51).

The following commands are applicable to ADSP-BF534, ADSP-BF536 and ADSP-BF537
processors:

ADI_PWR_CMD_SET_VR_PHYWE An ADI_PWR_VR_PHYWE enumeration value indicating
whether to enable/disable the PHYWE bit (see “ADI_PWR_
VR_PHYWE” on page 3-50).

ADI_PWR_CMD_SET_VR_CANWE An ADI_PWR_VR_CANWE enumeration value indicating
whether to enable/disable the CANWE bit (see “ADI_PWR_
VR_CANWE” on page 3-47).

ADI_PWR_CMD_SET_VR_CLKBU-
FOE

An ADI_PWR_VR_CLKBUFOE enumeration value indicating to
enable/disable the CLKBUFOE bit (see “ADI_PWR_VR_CLK-
BUFOE” on page 3-49).

ADI_PWR_CMD_SET_VR_CKELOW An ADI_PWR_VR_CKELOW enumeration value indicating
whether to enable/disable the CKELOW bit (see “ADI_PWR_
VR_CKELOW” on page 3-48).

Device Drivers and System Services Manual for Blackfin Processors 3-29

Power Management Module

Prototype

ADI_PWR_RESULT adi_pwr_SetVoltageRegulator(
 ADI_PWR_COMMAND command,

 void *Value

);

Arguments

Return Value

In debug variant of the library, the adi_pwr_SetVoltageRegulator func-
tion returns the following result codes. Otherwise, ADI_PWR_RESULT_
SUCCESS is returned.

Command An ADI_PWR_COMMAND enumeration value specifies the
meaning of the associated value argument.

Value This is the required value (see “adi_pwr_SetVoltageRegula-
tor” on page 3-26).

ADI_PWR_RESULT_INVALID_
VR_VLEV

The VLEV argument is invalid or insufficient to sustain the
current core and system clock frequencies.

ADI_PWR_RESULT__INVALID_
VR_FREQ

The FREQ value is invalid.

ADI_PWR_RESULT__INVALID_
VR_GAIN

The GAIN value is invalid.

ADI_PWR_RESULT__INVALID_
VR_WAKE

The WAKE value is invalid.

ADI_PWR_RESULT_INVALID_
VR_PHYWE

The PHYWE value is invalid.

ADI_PWR_RESULT_INVALID_
VR_CANWE

The CANWE value is invalid.

ADI_PWR_RESULT_INVALID_
VR_CLKBUFOE

The CLKBUFOE value is invalid.

Public Data Types and Enumerations

3-30 Device Drivers and System Services Manual for Blackfin Processors

Public Data Types and Enumerations
This section provides descriptions of the PM public data types and
enumerations

ADI_PWR_RESULT_INVALID_
VR_CKELOW

The CKELOW value is invalid.

ADI_PWR_RESULT__BAD_COM-
MAND

The Command argument is unrecognized.

ADI_PWR_RESULT_IGNORED The PM module has not been initialized.

Device Drivers and System Services Manual for Blackfin Processors 3-31

Power Management Module

ADI_PWR_COMMAND

The ADI_PWR_COMMAND enumeration type describes the command type in
an ADI_PWR_COMMAND_PAIR structure. The following table details the avail-
able commands, the associated data values and the valid context for their
use:

Commands Associated Data Value

Commands that can be used with the adi_pwr_Init, adi_pwr_Control, and
adi_pwr_SetVoltageRegulator functions:

ADI_PWR_CMD_END The data value is ignored as the command simply
marks the end of a table of command pairs.

Commands that can be used with either the adi_pwr_Control or
adi_pwr_SetVoltageRegulator functions:

ADI_PWR__CMD_PAIR Indicates that a single command pair is being passed.

ADI_PWR__CMD_TABLE Indicates that a table of command pairs is being
passed.

Commands that can be used with either the adi_pwr_Init or adi_pwr_Control functions:

ADI_PWR_CMD_SET_INPUT_DELAY An ADI_PWR_INPUT_DELAY value specifying whether
or not to add approximately 200ps of delay to the
time when inputs are latched on the external
memory interface (see “ADI_PWR_INPUT_
DELAY” on page 3-37).

ADI_PWR_CMD_SET_OUTPUT_DELAY An ADI_PWR_OUTPUT_DELAY value specifying
whether or not to add approximately 200ps of delay
to external memory output signals (see “ADI_PWR_
OUTPUT_DELAY” on page 3-37.

ADI_PWR_CMD_SET_PLL_LOCKCNT A u16 value specifying the number of SCLK cycles to
occur during the IDLE stage of the PLL
programming sequence before the processor sets the
PLL_LOCKED bit in the PLL_STAT register. This value
is held in the PLL_LOCKCNT register.

Commands valid only when passed to the adi_pwr_Init function:

ADI_PWR_CMD_SET_EZKIT An ADI_PWR_EZKIT value to identify the EZ-KIT for
which the power management is to be
configured (see “ADI_PWR_EZKIT” on page 3-37).

Public Data Types and Enumerations

3-32 Device Drivers and System Services Manual for Blackfin Processors

ADI_PWR_CMD_SET_PROC_VARIANT An ADI_PWR_PROC_KIND value specifying the proces-
sor variant (see “ADI_PWR_PROC_KIND” on
page 3-41).

ADI_PWR_CMD_SET_PACKAGE An ADI_PWR_PACKAGE_KIND value describing the
packaging type of the processor (see “ADI_PWR_
PACKAGE_KIND” on page 3-39).

ADI_PWR_CMD_SET_CLKIN A u16 value specifying the external clock frequency,
CLKIN, in MHz supplied to the processor.

ADI_PWR_CMD_SET_VDDINT An ADI_PWR_VLEV value specifying the Core
Voltage Level provided by an external voltage
regulator (see “ADI_PWR_VLEV” on page 3-46).

ADI_PWR_CMD_SET_VDDEXT An ADI_PWR_VDDEXT value specifying the external
voltage level applied to the internal voltage
regulator (see “ADI_PWR_VDDEXT” on
page 3-45).

ADI_PWR_CMD_FORCE_DATASHEET_
VALUES

Enforces the Core Clock frequency limits for each
voltage level as defined in the relevant data sheet.
(default).

ADI_PWR_CMD_SET_CCLK_TABLE The address of a table containing ADI_PWR_NUM_
VLEVS values of type u16 detailing the max CCLK
frequency for each ADI_PWR_VLEV value. These
values will be used instead of the data sheet values.

ADI_PWR_CMD_SET_IVG An u16 value specifying the IVG level for the PLL_
WAKEUP event. This defaults to 7.

ADI_PWR_CMD_SET_PC133_COMPLI-
ANCE

An ADI_PWR_PC133_COMPLIANCE value specifying
whether or not the SDRAM is to comply with the
PC-133 standard. Non-compliance to the standard is
required to enable the processor to return from
Hibernate mode without losing the contents of
SDRAM. This value prevents SDRAM decay during
reset, enabling the contents of SDRAM to be pre-
served through the Hibernate-reset or Deep Sleep
reset cycle. (This command applies to ADSP-BF534,
ADSP-BF536, and ADSP-BF537 cores only).

Commands valid only when passed to the adi_pwr_SetVoltageRegulator function:

ADI_PWR_CMD_SET_VR_VLEV An ADI_PWR_VLEV value specifying the voltage level
required of the voltage regulator (see “ADI_PWR_
VLEV” on page 3-46).

Device Drivers and System Services Manual for Blackfin Processors 3-33

Power Management Module

ADI_PWR_CMD_SET_VR_FREQ An ADI_PWR_VR_FREQ value specifying the required
voltage regulator switching oscillator frequency. Use
the ADI_PWR_FREQ_POWERDOWN value to bypass the
onboard voltage regulator (see “ADI_PWR_VR_
FREQ” on page 3-50).

ADI_PWR_CMD_SET_VR_GAIN An ADI_PWR_VR_GAIN value specifying the internal
loop gain of the switching regulator loop (“ADI_
PWR_VR_GAIN” on page 3-50).

ADI_PWR_CMD_SET_VR_WAKE An ADI_PWR_VR_WAKE value specifying if the
voltage regulator is to be awakened from
powerdown upon an interrupt from the RTC or a
low going edge on the RESET# pin (“ADI_PWR_
VR_WAKE” on page 3-51).

ADI_PWR_CMD_SET_VR_PHYWE An ADI_PWR_VR_PHYWE enumeration value
indicating whether to enable/disable the PHYWE bit.
(ADSP-BF534, ADSP-BF536 and ADSP-BF537
cores only) (“ADI_PWR_VR_PHYWE” on
page 3-50).

ADI_PWR_CMD_SET_VR_CANWE An ADI_PWR_VR_CANWE enumeration value
indicating whether to enable or disable the CANWE
bit. (ADSP-BF534, ADSP-BF536, and
ADSP-BF537 cores only) (see “ADI_PWR_VR_
CANWE” on page 3-47).

ADI_PWR_CMD_SET_VR_CLKBUFOE An ADI_PWR_VR_CLKBUFOE enumeration value
indicating whether to enable or disable the
 CLKBUFOE bit. (ADSP-BF534, ADSP-BF536 and
ADSP-BF537 cores only) (“ADI_PWR_VR_CLK-
BUFOE” on page 3-49).

ADI_PWR_CMD_SET_VR_CKELOW An ADI_PWR_VR_CKELOW enumeration value
indicating whether to enable or disable the CKELOW
bit. (ADSP-BF534, ADSP-BF536, and
ADSP-BF537 cores only) (“ADI_PWR_VR_
CKELOW” on page 3-48).

Commands valid only when passed to the adi_pwr_Control function:

ADI_PWR_CMD_GET_VDDINT An ADI_PWR_VLEV value containing the maximum
core voltage level (“ADI_PWR_VLEV” on
page 3-46).

Public Data Types and Enumerations

3-34 Device Drivers and System Services Manual for Blackfin Processors

ADI_PWR_CMD_GET_VR_VLEV An ADI_PWR_VLEV value containing the current
voltage level of the internal voltage regulator. Not
applicable when the internal regulator is bypassed
(“ADI_PWR_VLEV” on page 3-46).

ADI_PWR_CMD_GET_VR_FREQ An ADI_PWR_FREQ value containing the current
voltage regulator switching oscillator frequency
(“ADI_PWR_VR_FREQ” on page 3-50).

ADI_PWR_CMD_GET_VR_GAIN An ADI_PWR_GAIN value containing the internal loop
gain of the switching regulator loop (“ADI_PWR_
VR_GAIN” on page 3-50).

ADI_PWR_CMD_GET_VR_WAKE An ADI_PWR_VR_WAKE value (specifying if the
voltage can be awakened from powerdown upon an
interrupt from the RTC or a low going edge on the
RESET# pin (“ADI_PWR_VR_WAKE” on
page 3-51).

ADI_PWR_CMD_GET_VR_PHYWE An ADI_PWR_VR_PHYWE enumeration value
indicating if the PHYWE bit has been enabled/
disabled. (ADSP-BF534, ADSP-BF536 and
ADSP-BF537 cores only) (“ADI_PWR_VR_
PHYWE” on page 3-50).

ADI_PWR_CMD_GET_VR_CANWE An ADI_PWR_VR_CANWE enumeration value
indicating if the CANWE bit has been enabled or
disabled. (ADSP-BF534, ADSP-BF536 and
ADSP-BF537 cores only) (“ADI_PWR_VR_
CANWE” on page 3-47).

ADI_PWR_CMD_GET_VR_CLKBUFOE An ADI_PWR_VR_CLKBUFOE enumeration value
indicating if the CLKBUFOE bit has been enabled or
disabled. (ADSP-BF534, ADSP-BF536, and
ADSP-BF537 cores only) (“ADI_PWR_VR_CLK-
BUFOE” on page 3-49).

ADI_PWR_CMD_GET_VR_CKELOW An ADI_PWR_VR_CKELOW enumeration value
indicating if the CKELOW bit has been enabled or dis-
abled. (ADSP-BF534, ADSP-BF536, and
ADSP-BF537 cores only) (“ADI_PWR_VR_
CKELOW” on page 3-48).

ADI_PWR_CMD_GET_PLL_LOCKCNT A u16 value containing the value in the PLL_LOCK-
CNT register.

Device Drivers and System Services Manual for Blackfin Processors 3-35

Power Management Module

ADI_PWR_COMMAND_PAIR

This data type is used to enable the generation of a table of control com-
mands to be sent to the Power Management module via the adi_pwr_Init,
adi_pwr_SetVoltageRegulator, and adi_pwr_Control functions:

typedef struct _ADI_PWR_COMMAND_PAIR {
 ADI_PWR_COMMAND kind;
 void *value;

} ADI_PWR_COMMAND_PAIR;

Valid values for the kind field are provided in ADI_PWR_COMMAND.

ADI_PWR_CSEL

This data type defines the Core Clock divider bit field in the PLL_DIV reg-
ister. Valid values are:

ADI_PWR_PWR_CSEL_1 Divides Voltage Core Oscillator frequency by 1

ADI_PWR_PWR_CSEL_2 Divides Voltage Core Oscillator frequency by 2

ADI_PWR_PWR_CSEL_4 Divides Voltage Core Oscillator frequency by 4

ADI_PWR_PWR_CSEL_8 Divides Voltage Core Oscillator frequency by 4

Public Data Types and Enumerations

3-36 Device Drivers and System Services Manual for Blackfin Processors

ADI_PWR_DF

This data type defines the values for the DF bit in the PLL Control register.
A value of ADI_PWR_DF_ON causes the value of CLKIN/2 to be passed to the
PLL module. According to the hardware reference manual for the
ADSP-BF533 processor, this leads to lower power dissipation*,

ADI_PWR_DF_NONE Indicates that no PLL input divider value is to be set.

ADI_PWR_DF_OFF Pass CLKIN to the PLL.

ADI_PWR_DF_ON Pass CLKIN/2 to the PLL.

* See ADSP-BF533 Blackfin Hardware Reference Manual, Revision 1.0, December 2003, page 8-4.

Device Drivers and System Services Manual for Blackfin Processors 3-37

Power Management Module

ADI_PWR_EZKIT

This enumeration type describes the Revision of the EZ-KIT board for
which the power management module is to be configured. For Blackfin
these are:

ADI_PWR_INPUT_DELAY

This data type defines the values that the input delay bit can take in the
PLL Control register.

ADI_PWR_OUTPUT_DELAY

This data type defines the values that the output delay bit can take in the
PLL Control register.

ADI_PWR_EZKIT_BF533_750MHZ The ADSP-BF533 EZ-KIT LITE board with the
SKBC750 processor. Please note, this option
disables the internal voltage regulator, since it is
assumed the external voltage regulator has been
enabled. To use the 750MHz kit with the internal
regulator, use the ADI_PWR_EZKIT_BF533_600MHZ
option instead.

ADI_PWR_EZKIT_BF533_600MHZ The ADSP-BF533 EZ-KIT LITE board with either
the SKBC600 or SKBC750 processor, with the
internal voltage regulator enabled, which caps the lat-
ter's core clock (CCLK) at 600MHz.

ADI_PWR_EZKIT_BF537_600MHZ The ADSP-BF537 EZ-KIT LITE board with the
SKBC600 processor.

ADI_PWR_INPUT_DELAY_OFF Do not add input delay.

ADI_PWR_INPUT_DELAY_ON Add approximately 200ps of delay to the time when
inputs are latched on the external memory interface.

ADI_PWR_OUTPUT_DELAY_OFF Do not add output delay.

ADI_PWR_OUTPUT_DELAY_ON Add approximately 200ps of delay to external
memory output signals.

Public Data Types and Enumerations

3-38 Device Drivers and System Services Manual for Blackfin Processors

ADI_PWR_MODE

This data type defines the power mode of the processor. Valid power
mode values are:

ADI_PWR_MODE_FULL_ON Processor is in Full-On mode; clock speeds are as pro-
grammed.

ADI_PWR_MODE_ACTIVE Processor is in Active mode with only L1 DMA access
allowed. CCLK and SCLK are pegged to CLKIN as the
PLL controller is bypassed, providing medium power
saving.

ADI_PWR_MODE_ACTIVE_PLLDISABLED Processor is in Active mode with only L1 DMA access
allowed. CCLK and SCLK are pegged to CLKIN as the
PLL controller is bypassed and disabled, providing
medium power saving.

ADI_PWR_MODE_SLEEP Processor is in Sleep mode. It can be woken up with
any interrupt appropriately masked in the SIC_IWR
register, providing high power saving.

ADI_PWR_MODE_DEEP_SLEEP Processor is in Deep Sleep mode. It can only be woken
up with an appropriately masked RTC
interrupt or Reset, providing high power saving.

ADI_PWR_MODE_HIBERNATE The processor is in Hibernate mode. It can only be
awakened on system Reset, providing maximum
power saving.

Device Drivers and System Services Manual for Blackfin Processors 3-39

Power Management Module

ADI_PWR_PACKAGE_KIND

This data type defines the package type of the processor. Along with the
external voltage (“ADI_PWR_VDDEXT” on page 3-45), this determines
the heat dissipation of the part.

ADI_PWR_PACKAGE_MBGA MBGA - identified by the hemispherical contacts on
the under surface of the processor.

ADI_PWR_PACKAGE_LQFP LQFP - identified by the leg contacts around the
edges of the processor.

Public Data Types and Enumerations

3-40 Device Drivers and System Services Manual for Blackfin Processors

ADI_PWR_PCC133_COMPLIANCE

This data type defines the valid values for setting PC-133 compliance or
otherwise. This value governs whether or not the SCKE pin on the proces-
sor is asserted on reset.

ADI_PWR_PC133_COMPLIANCE_
DISABLED

SCKE is asserted on reset—SDRAM contents are invalidated.

ADI_PWR_PC133_
COMPLIANCE_ENABLED

SCKE is not asserted on reset—SDRAM contents are
maintained.

Device Drivers and System Services Manual for Blackfin Processors 3-41

Power Management Module

ADI_PWR_PROC_KIND

This data type defines the processor variant, which governs the appropri-
ate limits for speed selection. For ADSP-BF533 processors, these are:

ADI_PWR_PROC_BF533SKBC750 The ADSP-BF533SKBC750 processor.

ADI_PWR_PROC_BF533SKBC600 The ADSP-BF533SKBC600 processor.

ADI_PWR_PROC_BF533SBBC500 The ADSP-BF533SBBC500 processor.

ADI_PWR_PROC_BF531_OR_BF532 All package types for ADSP-BF531 and
ADSP-BF532.

ADI_PWR_PROC_BF537SKBC1600 The ADSP-BF537SKBC1600 processor.

ADI_PWR_PROC_BF537SBBC1500 The ADSP-BF537SBBC1500 processor.

ADI_PWR_PROC_BF536SBBC1400 The ADSP-BF537SBBC1400 processor.

ADI_PWR_PROC_BF536SBBC1300 The ADSP-BF537SBBC1300 processor.

ADI_PWR_PROC_BF534SBBC1500 The ADSP-BF534SBBC1500 processor.

ADI_PWR_PROC_BF534SBBC1400 The ADSP-BF534SBBC1400 processor.

Public Data Types and Enumerations

3-42 Device Drivers and System Services Manual for Blackfin Processors

ADI_PWR_RESULT

The Power Management module functions return a result code of the enu-
meration type, ADI_PWR_RESULT. The PM module return values are:

ADI_PWR_RESULT_SUCCESS This routine completed successfully.

ADI_PWR_RESULT_FAILED A generic failure was encountered.

ADI_PWR_RESULT_NO_MEMORY Insufficient memory for configuration values to be stored.

ADI_PWR_RESULT_BAD_COM-
MAND

The command is not recognized.

ADI_PWR_RESULT_CALL_
IGNORED

A function call has been ignored with no action taken, due to
the PM module not being initialized.

ADI_PWR_RESULT_INVALID_
VDDEXT

An invalid external voltage level has been specified.

ADI_PWR_RESULT_INVALID_
PROCESSOR

The processor type specified is invalid.

ADI_PWR_RESULT_INVALID_
IVG

The IVG level supplied for PLL wakeup is invalid.

ADI_PWR_RESULT_INVALID_
INPUT_DELAY

The input delay value is invalid.

ADI_PWR_RESULT_INVALID_
OUTPUT_DELAY

The output delay value is invalid.

ADI_PWR_RESULT_INVALID_
LOCKCNT

The PLL lock count value is invalid.

ADI_PWR_RESULT_INVALID_
EZKIT

This is an invalid EZ-Kit type.

ADI_PWR_RESULT_INVALID_
MODE

An invalid operating mode has been specified.

ADI_PWR_RESULT_INVALID_
CSEL

An invalid value for CSEL has been specified.

ADI_PWR_RESULT_INVALID_
SSEL

An invalid value for SSEL has been specified.

Device Drivers and System Services Manual for Blackfin Processors 3-43

Power Management Module

ADI_PWR_INVALID_CSEL_
SSEL_COMBINATION

The core clock divider is greater that the system clock divider
value, or both ADI_PWR_CSEL_NONE and ADI_PWR_SSEL_
NONE are specified.

ADI_PWR_RESULT_VOLTAGE_
REGULATOR_BYPASSED

Voltage regulator cannot be set since it is in bypass mode.

ADI_PWR_RESULT_INVALID_
VR_VLEV

The VLEV argument is invalid or insufficient to sustain the
current core and system clock frequencies.

ADI_PWR_RESULT_INVALID_
VR_FREQ

The FREQ value is invalid.

ADI_PWR_RESULT_INVALID_
VR_GAIN

The GAIN value is invalid.

ADI_PWR_RESULT_INVALID_
VR_WAKE

The WAKE value is invalid.

ADI_PWR_RESULT_INVALID_
VR_PHYWE

The PHYWE value is invalid.

ADI_PWR_RESULT_INVALID_
VR_CANWE

The CANWE value is invalid.

ADI_PWR_RESULT_INVALID_
VR_CLKBUFOE

The CLKBUFOE value is invalid.

ADI_PWR_RESULT_INVALID_
VR_CKELOW

The CKELOW value is invalid.

Public Data Types and Enumerations

3-44 Device Drivers and System Services Manual for Blackfin Processors

ADI_PWR_SSEL

This data type defines the System Clock divider bit field in the PLL_DIV
register. Valid values are:

ADI_PWR_PWR_SSEL_1 Divides Voltage Core Oscillator frequency by 1

ADI_PWR_PWR_SSEL_2 Divides Voltage Core Oscillator frequency by 2

ADI_PWR_PWR_SSEL_3 Divides Voltage Core Oscillator frequency by 3

ADI_PWR_PWR_SSEL_4 Divides Voltage Core Oscillator frequency by 4

ADI_PWR_PWR_SSEL_5 Divides Voltage Core Oscillator frequency by 5

ADI_PWR_PWR_SSEL_6 Divides Voltage Core Oscillator frequency by 6

ADI_PWR_PWR_SSEL_7 Divides Voltage Core Oscillator frequency by 7

ADI_PWR_PWR_SSEL_8 Divides Voltage Core Oscillator frequency by 8

ADI_PWR_PWR_SSEL_9 Divides Voltage Core Oscillator frequency by 9

ADI_PWR_PWR_SSEL_10 Divides Voltage Core Oscillator frequency by 10

ADI_PWR_PWR_SSEL_11 Divides Voltage Core Oscillator frequency by 11

ADI_PWR_PWR_SSEL_12 Divides Voltage Core Oscillator frequency by 12

ADI_PWR_PWR_SSEL_13 Divides Voltage Core Oscillator frequency by 13

ADI_PWR_PWR_SSEL_14 Divides Voltage Core Oscillator frequency by 14

ADI_PWR_PWR_SSEL_15 Divides Voltage Core Oscillator frequency by 15

Device Drivers and System Services Manual for Blackfin Processors 3-45

Power Management Module

ADI_PWR_VDDEXT

This data type defines the external voltage (VDDEXT) supplied to the voltage
regulator

ADI_PWR_VDDEXT_330 3.3 Volts

ADI_PWR_VDDEXT_250 2.5 Volts

Public Data Types and Enumerations

3-46 Device Drivers and System Services Manual for Blackfin Processors

ADI_PWR_VLEV

This data type defines the acceptable voltage levels for the voltage regula-
tor. The following table lists the values for ADSP-BF533 and
ADSP-BF561 processors.

ADI_PWR_VLEV_085 0.85 V

ADI_PWR_VLEV_090 0.90 V

ADI_PWR_VLEV_095 0.95 V

ADI_PWR_VLEV_100 1.00 V

ADI_PWR_VLEV_105 1.05 V

ADI_PWR_VLEV_110 1.10 V

ADI_PWR_VLEV_115 1.15 V

ADI_PWR_VLEV_120 1.20 V (default)

ADI_PWR_VLEV_125 1.25 V

ADI_PWR_VLEV_130 1.30 V

ADI_PWR_VLEV_135 1.35 V

ADI_PWR_VLEV_140 1.40 V

Device Drivers and System Services Manual for Blackfin Processors 3-47

Power Management Module

ADI_PWR_VR_CANWE

This data type defines the valid values for the CANWE bit in the Voltage
Regulator Control register. If enabled, the Voltage Regulator can be awak-
ened from powerdown by activity on the Controller Area Network (CAN)
interface.

ADI_PWR_VR_CANWE_DISABLED Disable wake up by CAN activity.

ADI_PWR_VR_CANWE_ENABLED Enable wake up by CAN activity.

Public Data Types and Enumerations

3-48 Device Drivers and System Services Manual for Blackfin Processors

ADI_PWR_VR_CKELOW

This data type defines the valid values for the CKELOW bit in the Voltage
Regulator Control register. If enabled, the SCKE pin is driven low on sys-
tem reset to enable the SDRAM to remain in self-refresh mode.

ADI_PWR_VR_PHYWE_DISABLED Drive SCKE high on reset—SDRAM contents are
invalidated.

ADI_PWR_VR_PHYWE_ENABLED Drive SCKE low on reset—SDRAM contents are
maintained.

Device Drivers and System Services Manual for Blackfin Processors 3-49

Power Management Module

ADI_PWR_VR_CLKBUFOE

This data type defines the valid values for the CLKBUFOE bit in the Voltage
Regulator Control register. If enabled, the CLKIN signal can be shared with
peripheral devices, especially the Ethernet PHY.

ADI_PWR_VR_CLKBUFOE_DIS-
ABLED

Disable CLKIN sharing.

ADI_PWR_VR_CLKBUFOE_
ENABLED

Enable CLKIN sharing.

Public Data Types and Enumerations

3-50 Device Drivers and System Services Manual for Blackfin Processors

ADI_PWR_VR_FREQ

This data type defines the acceptable switching frequency values for the
voltage regulator. Its value is linked to the switching capacitor and induc-
tor values. The higher the frequency setting, the smaller the capacitor and
inductor values. The following table lists the valid values for all Blackfin
processors.

ADI_PWR_VR_GAIN

This data type defines the acceptable values for the internal loop gain of
the switching regulator loop. The gain controls how quickly the voltage
output settles on its final value. The higher the gain, the quicker the set-
tling time. High gain settings cause greater overshoot in the process.

ADI_PWR_VR_PHYWE

This data type defines the values for the PHYWE bit in the Voltage Regula-
tor Control register. If enabled, the Voltage Regulator can be awakened
from powerdown by activity on the PHY interface.

ADI_PWR_VR_FREQ_POWERDOWN Powerdown/bypass onboard regulation

ADI_PWR_VR_FREQ_333KHZ 333 kHz

ADI_PWR_VR_FREQ_667KHZ 667 kHz

ADI_PWR_VR_FREQ_1MHZ 1 MHz (default)

ADI_PWR_VR_GAIN_5 5

ADI_PWR_VR_GAIN_110 10

ADI_PWR_VR_GAIN_20 20 (default)

ADI_PWR_VR_GAIN_50 50

ADI_PWR_VR_PHYWE_DISABLED Disable wake up by PHY activity.

ADI_PWR_VR_PHYWE_ENABLED Enable wake up by PHY activity.

Device Drivers and System Services Manual for Blackfin Processors 3-51

Power Management Module

ADI_PWR_VR_WAKE

This data type defines the values for the WAKE bit in the Voltage Regulator
Control register. If enabled (ADI_PWR_VR_WAKE_ENABLED), the voltage regu-
lator can be awakened from powerdown (ADI_PWR_VR_FREQ_POWERDOWN)
upon an RTC interrupt or a low-going edge on the RESET pin.

PM Module Macros
The following macros are provided for convenience.

ADI_PWR_VR_WAKE_DISABLED Disables wake up by RTC and RESET.

ADI_PWR_VR_WAKE_ENABLED Enables wake up by RTC and RESET.

ADI_PWR_VLEV_DEFAULT The default/reset voltage level ADI_PWR_VLEV_130.

ADI_PWR_VLEV_MIN The minimum voltage level ADI_PWR_VLEV_085.

ADI_PWR_VLEV_MAX The maximum voltage level ADI_PWR_VLEV_120.

ADI_PWR_VOLTS(V) Returns the voltage in volts as a float for the given
level.

ADI_PWR_MILLIVOLTS(V) Returns an integer value of the Voltage in millivolts
for the given level.

ADI_PWR_VR_FREQ_DEFAULT The default/reset switching frequency value, ADI_
PWR_FREQ_1MHZ.

ADI_PWR_VR_FREQ_MIN The minimum switching frequency value, ADI_PWR_
FREQ_POWERDOWN.

ADI_PWR_VR_FREQ_MAX The maximum switching frequency value, ADI_PWR_
FREQ_1MHZ.

ADI_PWR_VR_GAIN_DEFAULT The default/reset voltage regulator gain value, ADI_
PWR_GAIN_20.

ADI_PWR_VR_GAIN_MIN The minimum voltage regulator gain value, ADI_
PWR_GAIN_5.

ADI_PWR_VR_GAIN_MAX The default/reset voltage regulator gain value ADI_
PWR_GAIN_20.

PM Module Macros

3-52 Device Drivers and System Services Manual for Blackfin Processors

ADI_PWR_CLKIN_EZKIT_BF533 External clock frequency of EZ-KIT for
ADSP-BF533.

ADI_PWR_CLKIN_EZKIT_BF537 External clock frequency of EZ-KIT for
ADSP-BF537.

ADI_PWR_VDEXT_EZKIT_BF533 External voltage level of EZ-KIT for ADSP-BF533
(ADI_PWR_VDDEXT_330).

ADI_PWR_VDEXT_EZKIT_BF537 External voltage level of EZ-KIT for ADSP-BF537
(ADI_PWR_VDDEXT_330).

ADI_PWR_PROC_BF533SKBCZ600 Equivalent processor type to ADI_PWR_PROC_
BF533SKBC600.

ADI_PWR_PROC_BF533SBBZ500 Equivalent processor type to ADI_PWR_PROC_
BF533SBBC500.

ADI_PWR_PROC_BF532SBBC400 Equivalent processor type to ADI_PWR_PROC_BF531_
OR_BF532.

ADI_PWR_PROC_BF532SBST400 Equivalent processor type to ADI_PWR_PROC_BF531_
OR_BF532.

ADI_PWR_PROC_BF532SBBZ400 Equivalent processor type to ADI_PWR_PROC_BF531_
OR_BF532.

ADI_PWR_PROC_BF531SBBC400 Equivalent processor type to ADI_PWR_PROC_BF531_
OR_BF532.

ADI_PWR_PROC_BF531SBST400 Equivalent processor type to ADI_PWR_PROC_BF531_
OR_BF532.

ADI_PWR_PROC_BF531SBSTZ400 Equivalent processor type to ADI_PWR_PROC_BF531_
OR_BF532.

ADI_PWR_PROC_BF531SBBZ400 Equivalent processor type to ADI_PWR_PROC_BF531_
OR_BF532.

ADI_PWR_PACKAGE_PBGA Equivalent package type to ADI_PWR_PACKAGE_
MBGA.

ADI_PWR_PROC_BF537SKBC600 Equivalent processor type to ADI_PWR_PROC_
BF537SKBC1600.

ADI_PWR_PROC_BF537SKBC1Z600 Equivalent processor type to ADI_PWR_PROC_
BF537SKBC1600.

ADI_PWR_PROC_BF537SKBC2Z600 Equivalent processor type to ADI_PWR_PROC_
BF537SKBC1600.

Device Drivers and System Services Manual for Blackfin Processors 3-53

Power Management Module

ADI_PWR_PROC_BF537SBBC1Z500 Equivalent processor type to ADI_PWR_PROC_
BF537SBBC1500.

ADI_PWR_PROC_BF537SBBC2Z500 Equivalent processor type to ADI_PWR_PROC_
BF537SBBC1500.

ADI_PWR_PROC_BF536SBBC1Z400 Equivalent processor type to ADI_PWR_PROC_
BF536SBBC1400.

ADI_PWR_PROC_BF536SBBC2Z400 Equivalent processor type to ADI_PWR_PROC_
BF536SBBC1400.

ADI_PWR_PROC_BF536SBBC1Z300 Equivalent processor type to ADI_PWR_PROC_
BF536SBBC1300.

ADI_PWR_PROC_BF536SBBC2Z300 Equivalent processor type to ADI_PWR_PROC_
BF536SBBC1300.

ADI_PWR_PROC_BF534SBBC1Z400 Equivalent processor type to ADI_PWR_PROC_
BF534SBBC1400.

ADI_PWR_PROC_BF534SBBC2Z400 Equivalent processor type to ADI_PWR_PROC_
BF534SBBC1400.

ADI_PWR_PROC_BF534SBBC1Z500 Equivalent processor type to ADI_PWR_PROC_
BF534SBBC1500.

ADI_PWR_PROC_BF534SBBC2Z500 Equivalent processor type to ADI_PWR_PROC_
BF534SBBC1500.

PM Module Macros

3-54 Device Drivers and System Services Manual for Blackfin Processors

Device Drivers and System Services Manual for Blackfin Processors 4-1

4 EXTERNAL BUS INTERFACE
UNIT MODULE

This chapter describes the External Bus Interface Unit (EBIU) Module
that enables the dynamic configuration of the SDRAM Controller in
response to changes in the System Clock frequency.

This chapter contains:

• “Introduction” on page 4-2

• “Using the EBIU Module” on page 4-3

• “EBIU API Reference” on page 4-6

• “Public Data Types and Enumerations” on page 4-18

• “Setting Control Values in the EBIU Module” on page 4-24

Introduction

4-2 Device Drivers and System Services Manual for Blackfin Processors

Introduction
The initial goal of the External Bus Interface Unit (EBIU) Module is to
enable the Power Management module to adjust the SDRAM Controller
(SDC) in accordance with changes made to the System Clock (SCLK) fre-
quency. Calls to both adi_pwr_SetFreq and adi_pwr_SetMaxFreqForVolt
adjust the SDC settings to the SCLK frequency selected, provided the EBIU
module has been initialized. For more information on the PM module,
refer to “Power Management Module” on page 3-1.

Using the module is straightforward. The adi_ebiu_Init function is
called to set up the relevant values listed in the appropriate SDRAM data
sheet. Thereafter, the refresh rate is adjusted automatically each time the
Power Management module changes SCLK. “Using the EBIU Module”
provides a step-by-step description of how to work with the EBIU mod-
ule. Sample code is also included. A complete set of abbreviations for
Micron SDRAM modules and EZ-Kits is supported. These simplify the
initialization of the module. Refer to “ADI_EBIU_SDRAM_EZKIT” on
page 4-28 and “ADI_EBIU_SDRAM_MODULE_TYPE” on page 4-30.

The EBIU Module uses an unambiguous naming convention to safeguard
against conflicts with other software libraries provided by Analog Devices
or other companies. All enumeration values and typedefs use the ADI_
EBIU_ prefix, while functions and global variables use the lower case equiv-
alent, adi_ebiu_.

There are two versions of the library for each processor, corresponding to
the debug and release configurations in VisualDSP++ Release 4.0. In addi-
tion to the usual defaults for the debug configuration, the API functions
perform checks on the arguments passed and report appropriate error
codes, as required. In the release version of the library, most functions
return one of two result codes: ADI_EBIU_RESULT_SUCCESS on successful
completion, or ADI_EBIU_RESULT_CALL_IGNORED if the EBIU module has
not been initialized prior to the function call.

Device Drivers and System Services Manual for Blackfin Processors 4-3

External Bus Interface Unit Module

Using the EBIU Module
The first step to using the EBIU module involves setting up the module
for the SDRAM to be used. In this step a table of command-value pairs
passes to the adi_ebiu_Init function. The information required is
described in detail in “adi_ebiu_Init” on page 4-12 in the Description sec-
tion. The amount of information that must be passed depends on the
individual board configuration. For example, only one command-value
pair must passed to describe an EZ-Kit. For a production embedded
board, all information may be required.

In the following example assume that the ADSP-BF533 EZ-KIT Lite (Rev
1.3) should be configured. Specify the EZ-KIT board as follows:

ADI_EBIU_COMMAND_PAIR ezkit_sdram [] = {

 // ADSP-BF533 EZ-KIT LITE

 { ADI_EBIU_CMD_SET_EZKIT,(void*)ADI_EBIU_EZKIT_BF533 },
 { ADI_EBIU_CMD_END, 0 } // table end marker
};

adi_ebiu_Init(ezkit_sdram,TRUE);

Calls to adi_pwr_SetFreq or adi_pwr_SetMaxFreqForVolt in the Power
Management module prior to the call to adi_ebiu_Init have no effect on
the SDC settings. The second argument in the call to adi_ebiu_Init
instructs the module to either query the system clock frequency and adjust
the SDRAM refresh rate accordingly, or return without altering the
SDRAM refresh rate. Specify an argument value of TRUE if a call to adi_
pwr_SetFreq (and others) precedes the call to adi_ebiu_Init. Specify a
value of FALSE if the call order is reversed, for example:

adi_ebiu_Init(ezkit_sdram, FALSE);

adi_pwr_SetMaxFreqForVolt(ADI_PWR_VLEV_090);

To illustrate what is required for non EZ-Kit boards, the command table
is an abbreviated form of the following code:

Using the EBIU Module

4-4 Device Drivers and System Services Manual for Blackfin Processors

ADI_EBIU_SDRAM_BANK_VALUE bank_size;

ADI_EBIU_SDRAM_BANK_VALUE bank_width;

// set bank size to 32MB

// For BF533 the size and width settings apply to all banks

bank_size.value.size = ADI_EBIU_SDRAM_BANK_32MB;

// set column address width to 9-Bit
bank_width.value.width = ADI_EBIU_SDRAM_BANK_COL_9BIT;

// set min TWR to 1 SCLK cycle + 7.5ns
ADI_EBIU_TIMING_VALUE twrmin =
 {1,{7500, ADI_EBIU_TIMING_UNIT_PICOSEC}};

// set refresh period to 8192 cycles in 64ms
ADI_EBIU_TIMING_VALUE refresh =
 {8192,{64, ADI_EBIU_TIMING_UNIT_MILLISEC}};

// set min TRAS to 44ns
ADI_EBIU_TIME trasmin = {44, ADI_EBIU_TIMING_UNIT_NANOSEC};

// set min TRP to 20ns
ADI_EBIU_TIME trpmin = {20, ADI_EBIU_TIMING_UNIT_NANOSEC};

// set min TRCD to 20ns
ADI_EBIU_TIME trcdmin = {20, ADI_EBIU_TIMING_UNIT_NANOSEC};

// set up command table

ADI_EBIU_COMMAND_PAIR ezkit_sdram[] = {

 { ADI_EBIU_CMD_SET_SDRAM_BANK_SIZE, (void*)&bank_size },

 { ADI_EBIU_CMD_SET_SDRAM_BANK_COL_WIDTH,

 (void*)&bank_width},

 { ADI_EBIU_CMD_SET_SDRAM_CL_THRESHOLD, (void*)100 },// MHz

 { ADI_EBIU_CMD_SET_SDRAM_TRASMIN, (void*)&trasmin },

 { ADI_EBIU_CMD_SET_SDRAM_TRPMIN, (void*)&trpmin},

 { ADI_EBIU_CMD_SET_SDRAM_TRCDMIN, (void*)&trcdmin },

Device Drivers and System Services Manual for Blackfin Processors 4-5

External Bus Interface Unit Module

 { ADI_EBIU_CMD_SET_SDRAM_TWRMIN, (void*)&twrmin },

 { ADI_EBIU_CMD_SET_SDRAM_REFRESH, (void*)&refresh },

 { ADI_EBIU_CMD_END, 0}

};

The sample code shows that the minimum TWR value comprises two parts.
This reflects the definition found in the appropriate Blackfin processor
data sheet where the value is expressed as one cycle of SCLK plus 7.5 ns.
Similarly, the SDRAM refresh period value is expressed as the time taken
for the given number of refresh cycles. The sample code shows this value
as 64ms for 8192 cycles.

For boards that use Micron memory modules, users can also specify the
type and size of the bank:

ADI_EBIU_SDRAM_BANK_VALUE bank_size;

// set bank size to 32MB

bank_size.value.size = ADI_EBIU_SDRAM_BANK_32MB;

ADI_EBIU_COMMAND_PAIR ezkit_sdram[] = {

 // MT48LC16M16-75 module

 { ADI_EBIU_CMD_SET_SDRAM_MODULE,

 (void*)ADI_EBIU_SDRAM_MODULE_MT48LC16M16A2_75 },

 { ADI_EBIU_CMD_SET_SDRAM_BANK_SIZE, (void*)&bank_size },

 { ADI_EBIU_CMD_END, 0 }

};

adi_EBIU_Init(ezkit_sdram,FALSE);

EBIU API Reference

4-6 Device Drivers and System Services Manual for Blackfin Processors

Further changes can be made at any time by passing further com-
mand-value pairs or tables of pairs to adi_ebiu_Control. For example, to
pass a single command-value pair to enable the SDRAM to self-refresh
during inactivity, the following code could be used:

adi_ebiu_Control(

 ADI_EBIU_CMD_SET_SDRAM_SRFS,

 (void*)ADI_EBIU_SDRAM_SRFS_ENABLE

);

Since the SDRAM settings are closely tied to the system clock (SCLK) fre-
quency, the direct use of the adi_ebiu_AdjustSDRAM function from within
a client application is not required since it is called automatically by the
appropriate functions in the Power Management Module when SCLK
changes.

EBIU API Reference
This section provides descriptions of the EBIU module’s API functions.

Notation Conventions
The reference pages for the API functions use the following format:

Name and purpose of the function

Description – Function specification

Prototype – Required header file and functional prototype

Arguments – Description of function arguments

Return Value – Description of function return values

Device Drivers and System Services Manual for Blackfin Processors 4-7

External Bus Interface Unit Module

adi_ebiu_AdjustSDRAM

Description

For the passed System Clock (SCLK) Frequency the adi_ebiu_AdjustSDRAM
function calculates and sets the TRAS, TRP, TRCD and TWR values in the
EBIU_SDGCTL register and the RDIV value in the EBIU_SDRRC register.

This function is primarily used by the Power Management module to
ensure that SDRAM settings are optimal for the processor’s current SCLK
frequency.

The adi_ebiu_AdjustSDRAM function returns without making any changes
if the SDRAM has not been successfully initialized with a call to adi_
ebiu_Init.

Prototype

void adi_ebiu_AdjustSDRAM(

 const u32 fsclk

);

Arguments

Return Value

The function returns the following values in debug or release mode.

fsclk The System Clock, SCLK, Frequency in MHz.

ADI_EBIU_RESULT_SUCCESS This process completed successfully.

ADI_EBIU_RESULT_CALL_
IGNORED

The SDRAM has not been successfully initialized, or
SDRAM had not been enabled.

EBIU API Reference

4-8 Device Drivers and System Services Manual for Blackfin Processors

adi_ebiu_Control

Description

This function enables the EBIU SDRAM registers to be configured
according to command-value pairs (see ADI_EBIU_COMMAND_PAIR
on page 4-28), using one of the following options:

• A single command-value pair is passed:

adi_ebiu_Control(

 ADI_EBIU_CMD_SET_SDRAM_SRFS,

 (void*)ADI_EBIU_SDRAM_SRFS_ENABLE

);

• A single command-value pair structure is passed:

ADI_EBIU_COMMAND_PAIR cmd = {

 ADI_EBIU_CMD_SET_SDRAM_SRFS,

 (void*)ADI_EBIU_SDRAM_SRFS_ENABLE

};

adi_ebiu_Control(ADI_EBIU_CMD_PAIR, (void*)&cmd);

• A table of ADI_EBIU_COMMAND_PAIR structures is passed. The last
command-value entry in the table must be {ADI_EBIU_CMD_END,
0}:

ADI_EBIU_COMMAND_PAIR table[] = {

 { ADI_EBIU_CMD_SET_SDRAM_FBBRW, (void*)ADI_EBIU_SDRAM_

FBBRW_ENABLE },

 { ADI_EBIU_CMD_SET_SDRAM_CDDBG, (void*)ADI_EBIU_CDDBG_

ENABLE },

 { ADI_EBIU_CMD_END, 0 }

};

adi_ebiu_Control(

Device Drivers and System Services Manual for Blackfin Processors 4-9

External Bus Interface Unit Module

 ADI_EBIU_CMD_TABLE,

 (void*)table

);

Refer to ADI_EBIU_COMMAND on page 4-24 and “Command Value Enumer-
ations” on page 4-28 for the complete list of commands and associated
values.

Prototype

adi_EBIU_RESULT adi_ebiu_Control(
 ADI_EBIU_COMMAND command,
 void *value
);

Arguments

Return Value

In Debug mode one of the following values is returned, otherwise ADI_
EBIU_RESULT_SUCCESS or ADI_EBIU_RESULT_CALL_IGNORED is returned,
depending on whether or not the EBIU module has been successfully
initialized.

Command An ADI_EBIU_COMMAND enumeration value specifying the
meaning of the associated value argument.

Value This is the required value, (see in Description above).

ADI_EBIU_RESULT_BAD_COM-
MAND

The command is not recognized.

ADI_EBIU_RESULT_SUCCESS This function completed successfully.

ADI_EBIU_RESULT_CALL_
IGNORED

The EBIU module is not initialized.

ADI_EBIU_RESULT_INVALID_
SDRAM_SRFS

An invalid Self-refresh value is specified (see “ADI_EBIU_
SDRAM_TCSR” on page 4-32).

EBIU API Reference

4-10 Device Drivers and System Services Manual for Blackfin Processors

ADI_EBIU_RESULT_INVALID_
SDRAM_PUPSD

An invalid Power Up Start Delay bit value is specified (see
“ADI_EBIU_SDRAM_EBUFE” on page 4-33).

ADI_EBIU_RESULT_INVALID_
SDRAM_PSM

An invalid SDRAM Power Up Sequence bit value is specified
(see “ADI_EBIU_SDRAM_PUPSD” on page 4-33).

ADI_EBIU_RESULT_INVALID_
SDRAM_EBUFE

An invalid External Buffering bit value is specified (see
“ADI_EBIU_SDRAM_SRFS” on page 4-33).

ADI_EBIU_RESULT_INVALID_
SDRAM_FBBRW

An invalid Fast back-to-back read to write bit value is
specified (See “ADI_EBIU_SDRAM_FBBRW” on
page 4-34).

ADI_EBIU_RESULT_INVALID_
SDRAM_CDDBG

An invalid Control Disable during Bus Grant bit value is
specified (See s“ADI_EBIU_SDRAM_CDDBG” on
page 4-35).

Device Drivers and System Services Manual for Blackfin Processors 4-11

External Bus Interface Unit Module

adi_ebiu_GetConfigSize

Description

This function returns the number of bytes required to save the current
configuration data. This value is also available via the ADI_EBIU_SIZEOF_
CONFIG macro.

Prototype

size_t adi_ebiu_GetConfigSize(void);

Return Value

The size of the configuration structure.

EBIU API Reference

4-12 Device Drivers and System Services Manual for Blackfin Processors

adi_ebiu_Init

Description

This function initializes the EBIU module. Currently, the module is con-
figured to handle only the SDRAM Controller. Thus, the adi_ebiu_Init
function sets up the EBIU_SDGCTL, EBIU_SDBCTL, and EBIU_SDRRC registers
to reflect the correct SDRAM configuration attached to the processor.

The following values are required to be set for successful initialization:

Description Command Value Type

Bank Size ADI_EBIU_CMD_SET_SDRAM_BANK_SIZE ADI_EBIU_SDRAM_BANK_VALUE

Bank column
address width

ADI_EBIU_CMD_SET_SDRAM_BANK_COLUMN_WIDTH ADI_EBIU_SDRAM_BANK_VALUE

CAS1 latency
threshold
(MHz)

1 Column Address Strobe

ADI_EBIU_CMD_SET_SDRAM_CL_THRESHOLD u16

Minimum

TRAS2 (ns)

2 Required delay between issuing a Bank Activate command and a Precharge command, and
between the Self-Refresh command and the exit from Self-Refresh.

ADI_EBIU_CMD_SET_SDRAM_TRASMIN u16

Min. TRP3 (ns)

3 Required delay between issuing a Precharge command and the Bank Activate,
Auto-Refresh, or Self-Refresh commands.

ADI_EBIU_EBIU_CMD_SET_SDRAM_TRPMIN u16

Min. TRCD4
(ns)

4 Required delay between issuing a Bank Activate command and the start of the first read/write
command.

ADI_EBIU_CMD_SET_SDRAM_TRCDMIN u16

Min. TWR5
(cycles, ns)

5 Required delay between a Write command and a Precharge command.

ADI_EBIU_CMD_SET_SDRAM_TWRMIN ADI_EBIU_TIMING_VALUE

Refresh period
(cycles, ms)

ADI_EBIU_CMD_SET_SDRAM_REFRESH ADI_EBIU_TIMING_VALUE

Device Drivers and System Services Manual for Blackfin Processors 4-13

External Bus Interface Unit Module

Upon successful initialization of the module, subsequent calls to adi_
ebiu_AdjustSDRAM adjust the SDRAM refresh rate in the EBIU_SDRRC reg-
ister to correspond with the given system clock frequency. If the power
management module has been initialized prior to calling adi_ebiu_Init,
then the AdjustRefreshRate flag can be set to TRUE to instruct the func-
tion to initialize the SDRAM refresh rate to correspond to the current
value of SCLK. If not then, the SDRAM Controller is returned to reset
values.

When multiple banks are used, the ADI_EBIU_CMD_SET_SDRAM_BANK_SIZE
and ADI_EBIU_CMD_SET_SDRAM_BANK_COL_WIDTH command-value pairs
must be specified for each bank.

The criteria described above are also met if either the Micron memory
module and total size per bank or a particular EZ-Kit is specified. (See
“ADI_EBIU_SDRAM_EZKIT” on page 4-28 for further details).

If the system configuration makes use of low power (2.5V) SDRAM, the
following values also need to be initialized:

Additional command-value pairs can be passed to the adi_ebiu_Init
function. Alternatively, they can be set with a call to the adi_ebiu_Con-
trol function.

Description Command Value Type

Extended Mode
Register Enable

ADI_EBIU_CMD_SET_SDRAM_EMREN ADI_EBIU_SDRAM_SDRAM_EMREN

Partial Array
Self-Refresh

ADI_EBIU_CMD_SET_SDRAM_PASR ADI_EBIU_SDRAM_PASR

Temperature
Compensated
Self-Refresh

ADI_EBIU_CMD_SET_SDRAM_TCSR ADI_EBIU_SDRAM_TCSR

EBIU API Reference

4-14 Device Drivers and System Services Manual for Blackfin Processors

The adi_ebiu_Init function should only be called once, prior to adjust-
ing the power management settings, so that the SDRAM is adjusted
according to changes in SCLK. Subsequent calls to the function are
ignored.

Prototype

ADI_EBIU_RESULT adi_ebiu_Init(
 const ADI_EBIU_COMMAND_PAIR *ConfigData,
 const u16 AdjustRefreshRate

);

Arguments

Return Value

In debug mode, the returned values are:

ConfigData The address of a table of command-value pairs as defined by
“ADI_EBIU_COMMAND” on page 4-24 and “Command
Value Enumerations” on page 4-28. The last command in
the table must be the ADI_EBIU_CMD_END command.

AdjustRefreshRate A u16 value to determine whether the SDRAM refresh rate is
to be updated according to the current value of the SCLK
frequency.

ADI_EBIU_RESULT_BAD_COM-
MAND

A command-value pair is invalid.

ADI_EBIU_RESULT_FAILED Not all required items are initialized.

ADI_EBIU_RESULT_CALL_
IGNORED

This EBIU module is already initialized.

ADI_EBIU_RESULT_INVALID_
SDRAM_SCTLE

An invalid SCTLE value specified.

ADI_EBIU_RESULT_INVALID_
EZKIT

An invalid EZ-KIT type is specified.

Device Drivers and System Services Manual for Blackfin Processors 4-15

External Bus Interface Unit Module

ADI_EBIU_RESULT_INVALID_
SDRAM_MODULE

An invalid memory module type is specified.

ADI_EBIU_RESULT_INVALID_
SDRAM_BANK_SIZE

An invalid bank size is specified.

ADI_EBIU_RESULT_INVALID_
SDRAM_COL_WIDTH

An invalid Column Address width is specified.

ADI_EBIU_RESULT_INVALID_
SDRAM_TWRMIN

An invalid TWRMIN value is specified.

ADI_EBIU_RESULT_INVALID_
SDRAM_EMREN

An invalid EMREN value is specified.

ADI_EBIU_RESULT_INVALID_
SDRAM_PASR

An invalid PASR value is specified.

ADI_EBIU_RESULT_INVALID_
SDRAM_TCSR

An invalid TCSR value is specified.

EBIU API Reference

4-16 Device Drivers and System Services Manual for Blackfin Processors

adi_ebiu_LoadConfig

Description

This function restores the current configuration values from the memory
location pointed to by the hConfig argument. The SDRAM controller is
reset.

Prototype

ADI_EBIU_RESULT adi_ebiu_LoadConfig(

 ADI_EBIU_CONFIG_HANDLE hConfig,

 size_t szConfig

);

Argument

Return Value

In the debug variant of the library, one of the following values is returned.
Otherwise ADI_EBIU_RESULT_SUCCESS is returned.

hConfig The address of the memory area from which the current con-
figuration is to be stored.

szConfig Number of bytes available at the given address. Must be
greater than or equal to the adi_ebiu_GetConfigSize()
return value.

ADI_EBIU_RESULT_SUCCESS This process completed successfully.

ADI_EBIU_RESULT_NO_MEMORY The szConfig value is too small.

ADI_EBIU_RESULT_CALL_
IGNORED

The SDRAM has not been successfully initialized.

Device Drivers and System Services Manual for Blackfin Processors 4-17

External Bus Interface Unit Module

adi_ebiu_SaveConfig

Description

This function stores the current settings into the memory area pointed to
by the hConfig argument. Currently, only the SDRAM configuration is
saved.

Prototype

ADI_EBIU_RESULT adi_ebiu_SaveConfig(

ADI_EBIU_CONFIG_HANDLE hConfig,

size_t szConfig

);

Argument

Return Value

In the debug variant of the library, one of the following values is returned.
Otherwise ADI_EBIU_RESULT_SUCCESS is returned.

hConfig The address of the memory location into which the current
configuration is to be stored.

szConfig Number of bytes available at the given address. Must be
greater than or equal to the adi_ebiu_GetConfigSize()
return value.

ADI_EBIU_RESULT_SUCCESS This process completed successfully.

ADI_EBIU_RESULT_NO_MEMORY The szConfig value is too small.

ADI_EBIU_RESULT_CALL_
IGNORED

The SDRAM has not been successfully initialized.

Public Data Types and Enumerations

4-18 Device Drivers and System Services Manual for Blackfin Processors

Public Data Types and Enumerations
This section provides descriptions of the public data types and
enumerations.

Device Drivers and System Services Manual for Blackfin Processors 4-19

External Bus Interface Unit Module

ADI_EBIU_RESULT

All public EBIU module functions return a result code of the enumeration
type, ADI_EBIU_RESULT. Possible values are:

ADI_EBIU_RESULT_SUCCESS Generic success.

ADI_EBIU_RESULT_FAILED Generic failure.

ADI_EBIU_RESULT_BAD_COM-
MAND

Invalid control command is specified.

ADI_EBIU_RESULT_CALL_
IGNORED

A function call has been ignored with no action taken, as the
module has not been initialized.

ADI_EBIU_RESULT_INVALID_
SDRAM_EBE

Invalid value for the EBE field of the EBIU_SDBCTL register is
specified.

ADI_EBIU_RESULT_INVALID_
SDRAM_BANK_SIZE

Invalid value for the EBSZ field of the EBIU_SDBCTL register
is specified.

ADI_EBIU_RESULT_INVALID_
SDRAM_COL_WIDTH

Invalid value for the EBCAW field of the EBIU_SDBCTL
register is specified.

ADI_EBIU_RESULT_INVALID_
SDRAM_CDDBG

Invalid value for the CDDBG field of the EBIU_SDGCTL
register is specified.

ADI_EBIU_RESULT_INVALID_
SDRAM_EBUFE

Invalid value for the EBUFE field of the EBIU_SDGCTL
register is specified.

ADI_EBIU_RESULT_INVALID_
SDRAM_EMREN

Invalid value for the EMREN field of the EBIU_SDGCTL
register is specified.

ADI_EBIU_RESULT_INVALID_
SDRAM_FBBRW

Invalid value for the FBBRW field of the EBIU_SDGCTL
register is specified.

ADI_EBIU_RESULT_INVALID_
SDRAM_PASR

Invalid value for the PASR field of the EBIU_SDGCTL register
is specified.

ADI_EBIU_RESULT_INVALID_
SDRAM_PSM

Invalid value for the PSM field of the EBIU_SDGCTL register is
specified.

ADI_EBIU_RESULT_INVALID_
SDRAM_PUPSD

Invalid value for the PUPSD field of the EBIU_SDGCTL
register is specified.

ADI_EBIU_RESULT_INVALID_
SDRAM_SRFS

Invalid value for the SRFS field of the EBIU_SDGCTL register.
is specified

Public Data Types and Enumerations

4-20 Device Drivers and System Services Manual for Blackfin Processors

ADI_EBIU_RESULT_INVALID_
SDRAM_TCSR

Invalid value for the TCSR field of the EBIU_SDGCTL register
is specified.

ADI_EBIU_RESULT_INVALID_
SDRAM_TWRMIN

An invalid value for TWRMIN is specified and would cause TWR
to be greater than 3.

ADI_EBIU_RESULT_NO_MEMORY Insufficient memory to load/save configuration.

Device Drivers and System Services Manual for Blackfin Processors 4-21

External Bus Interface Unit Module

ADI_EBIU_SDRAM_BANK_VALUE

The ADI_EBIU_SDRAM_BANK_VALUE structure specifies the settings to be
applied to a specific bank.

typedef struct ADI_EBIU_SDRAM_BANK_VALUE (
 u16 bank;
 Union {
 ADI_EBIU_SDRAM_BANK_SIZE size;
 ADI_EBIU_SDRAM_BANK_COL_WIDTH width;
 } u;
} ADI_EBIU_SDRAM_BANK_VALUE;

See “ADI_EBIU_SDRAM_BANK_SIZE” on page 4-29 and “ADI_
EBIU_SDRAM_BANK_COL_WIDTH” on page 4-29 for details of the
size and width fields. The bank field is intended for future use and has no
meaning for the ADSP-BF531/ADSP-BF532/ADSP-BF533 and
ADSP-BF534/ADSP-BF536/ADSP-BF537 Blackfin processors.

Public Data Types and Enumerations

4-22 Device Drivers and System Services Manual for Blackfin Processors

ADI_EBIU_TIME

The ADI_EBIU_TIME structure enables users to specify a timing value as an
integral number of a given unit. It is defined as:

typedef struct ADI_EBIU_TIME {

 u32 value;

 ADI_EBIU_TIMING_UNIT units;

} ADI_EBIU_TIME;

Where ADI_EBIU_TIMING_UNIT is an enumeration type defined in the fol-
lowing table:

The actual values of the enumeration fields are used as factors in the inte-
ger arithmetic within the module. The millisecond value, which is used as
a logic control value, is an exception, since it is not used as a factor.

Developers can use the complete range of units to enable timing values to
be expressed as an unsigned 32-bit integer. For example, the SDRAM on
the ADSP-BF533 EZ-Kit Lite (Rev 1.3) board has a minimum TWR value
of one SCLK cycle and 7.5ns. The time value must be passed as 7500ps.
Thus the ADI_EBIU_TIME value must be specified as:

ADI_EBIU_TIME time = {7500, ADI_EBIU_TIMING_UNIT_PICOSEC};

ADI_EBIU_TIMING_UNIT_MIL-
LISEC

The time value specified by the associated value in the ADI_
EBIU_TIME structure is in milliseconds (ms).

ADI_EBIU_TIMING_UNIT_
MICROSEC

The time value specified by the associated value in the ADI_
EBIU_TIME structure is in microseconds (s).

ADI_EBIU_TIMING_UNIT_
NANOSEC

The time value specified by the associated value in the ADI_
EBIU_TIME structure is in nanoseconds (ns).

ADI_EBIU_TIMING_UNIT_
PICOSEC

The time value specified by the associated value in the ADI_
EBIU_TIME structure is in picoseconds (ps).

ADI_EBIU_TIMING_UNIT_FEM-
TOSEC

The time value specified by the associated value in the ADI_
EBIU_TIME structure is in femtoseconds (fs).

Device Drivers and System Services Manual for Blackfin Processors 4-23

External Bus Interface Unit Module

ADI_EBIU_TIMING_VALUE

Certain timing values required for the correct setting of the SDRAM con-
trol registers are specified on the appropriate data sheet as a number of
SCLK cycles combined with a value expressed in one of several units (for
example nanoseconds or milliseconds).

To facilitate the passing of such values to the adi_ebiu_Init function, the
ADI_EBIU_TIMING_VALUE structure is defined:

typedef struct ADI_EBIU_TIMING_VALUE {
 u32 cycles;
 ADI_EBIU_TIME time;
} ADI_EBIU_TIMING_VALUE;

Where ADI_EBIU_TIME is defined in “ADI_EBIU_TIME” on page 4-22.

For example, the SDRAM on the ADSP-BF533 EZ-Kit Lite (Rev 1.3)
board has a minimum TWR value of one SCLK cycle and 7.5ns. Using the
above structure, this value is expressed as:

ADI_EBIU_TIMING_VALUE twrmin

 = { 1, {7500, ADI_EBIU_TIMING_UNIT_PICOSEC}};

Setting Control Values in the EBIU Module

4-24 Device Drivers and System Services Manual for Blackfin Processors

Setting Control Values in the EBIU
Module

To set control values in the EBIU module, the user passes command-value
pairs (type ADI_EBIU_COMMAND_PAIR) to the adi_ebiu_Init and adi_ebiu_
Control functions (either individually or as a table). Note that adi_ebiu_
Init only allows a table to be supplied. This section describes the com-
mand-value pair structure and valid commands.

ADI_EBIU_COMMAND
The ADI_EBIU_COMMAND is used to control/access the configuration of the
EBIU Module. It is to be used in an ADI_EBIU_COMMAND_PAIR couplet to
set a configuration value in calls to adi_ebiu_Init and adi_ebiu_Control.

Table 4-1. ADI_EBIU_COMMAND Data Values

Command Associated data value

General commands used with both the adi_ebiu_Control and adi_ebiu_Init functions:

ADI_EBIU_CMD_END Defines the end of a table of command pairs.

ADI_EBIU_CMD_SET_SDRAM_EBUFE An ADI_EBIU_SDRAM_EBUFE value to specify
whether external buffers are to be used when
several SDRAM devices are used. See “ADI_
EBIU_SDRAM_SRFS” on page 4-33.

ADI_EBIU_CMD_SET_SDRAM_FBBRW An ADI_EBIU_SDRAM_FBBRW value to specify
whether to enable/disable fast back-to-back
read/write operations. See “ADI_EBIU_
SDRAM_FBBRW” on page 4-34.

ADI_EBIU_CMD_SET_SDRAM_CDDBG An ADI_EBIU_SDRAM_CDDBG value to specify
whether to enable/disable SDRAM control
signals when the external memory interface is
granted to an external controller. See “ADI_
EBIU_SDRAM_CDDBG” on page 4-35.

Device Drivers and System Services Manual for Blackfin Processors 4-25

External Bus Interface Unit Module

ADI_EBIU_CMD_SET_SDRAM_PUPSD An ADI_EBIU_SDRAM_PUPSD value specifying
whether or not the power up start sequence is
delayed by 15 SCLK cycles. See “ADI_EBIU_
SDRAM_PUPSD” on page 4-33.

ADI_EBIU_CMD_SET_SDRAM_PSM An ADI_EBIU_SDRAM_PSM value specifying the
order of events in the power up start sequence.
See “ADI_EBIU_SDRAM_PSM” on
page 4-34.

Commands valid only when passed to the adi_ebiu_Init function:

ADI_EBIU_CMD_SET_EZKIT An ADI_EBIU_EZKIT value to identify the
EZ-KIT for which the EBIU module is to be
configured. See “ADI_EBIU_SDRAM_
EZKIT” on page 4-28.

ADI_EBIU_CMD_SET_SDRAM_MODULE An ADI_EBIU_SDRAM_MODULE_TYPE value
containing the Micron Memory module to be
configured. This value applies to all banks in
use. See “ADI_EBIU_SDRAM_MODULE_
TYPE” on page 4-30.

ADI_EBIU_CMD_SET_SDRAM_BANK_SIZE The address of an ADI_EBIU_SDRAM_BANK_
VALUE structure containing the bank number
and the external bank size. Refer to “ADI_
EBIU_SDRAM_BANK_VALUE” on
page 4-21 and “ADI_EBIU_SDRAM_
BANK_SIZE” on page 4-29.

ADI_EBIU_CMD_SET_SDRAM_BANK_COL_WIDTH The address of an ADI_EBIU_SDRAM_BANK_
VALUE structure containing the bank number
and the external bank column address width.
See “ADI_EBIU_SDRAM_BANK_VALUE”
on page 4-21 and “ADI_EBIU_SDRAM_
BANK_COL_WIDTH” on page 4-29.

ADI_EBIU_CMD_SET_SDRAM_CL_THRESHOLD An u32 value to specify the SCLK frequency
threshold, which determines the CAS latency
value to be used.

Table 4-1. ADI_EBIU_COMMAND Data Values (Cont’d)

Command Associated data value

Setting Control Values in the EBIU Module

4-26 Device Drivers and System Services Manual for Blackfin Processors

ADI_EBIU_CMD_SET_SDRAM_TRASMIN An ADI_EBIU_TIME value to set the minimum
TRAS value as given on the data sheet of the
appropriate SDRAM. See “ADI_EBIU_
TIME” on page 4-22.

ADI_EBIU_CMD_SET_SDRAM_TRPMIN An ADI_EBIU_TIME value to set the minimum
TRP value as described in the appropriate
Blackfin processor data sheet of the
appropriate SDRAM. See “ADI_EBIU_
TIME” on page 4-22.

ADI_EBIU_CMD_SET_SDRAM_TRCDMIN An ADI_EBIU_TIME value to set the minimum
TRCD value as described in the appropriate
Blackfin processor data sheet of the
appropriate SDRAM. See “ADI_EBIU_
TIME” on page 4-22.

ADI_EBIU_CMD_SET_SDRAM_TWRMIN The address of an ADI_EBIU_TIMING_VALUE
structure containing the minimum TWR value
as described in the appropriate Blackfin
processor data sheet of the appropriate
SDRAM. See “ADI_EBIU_TIMING_
VALUE” on page 4-23.

ADI_EBIU_CMD_SET_SDRAM_REFRESH The address of an ADI_EBIU_TIMING_VALUE
structure containing the maximum tREF value
as given on the data sheet of the appropriate
SDRAM. See “ADI_EBIU_TIME” on
page 4-22.

ADI_EBIU_CMD_SET_SDGCTL_REG An u32 word containing the entire contents of
the EBIU_SDGCTL register.

ADI_EBIU_CMD_SET_SDBCTL_REG An u16 word containing the entire contents of
the EBIU_SDBCTL register.

ADI_EBIU_CMD_SET_SDRAM_EMREN An ADI_EBIU_SDRAM_EMREN value to specify
whether low power (2.5V) SDRAM is being
used. See “ADI_EBIU_SDRAM_MODULE_
TYPE” on page 4-30.

Table 4-1. ADI_EBIU_COMMAND Data Values (Cont’d)

Command Associated data value

Device Drivers and System Services Manual for Blackfin Processors 4-27

External Bus Interface Unit Module

ADI_EBIU_CMD_SET_SDRAM_PASR An ADI_EBIU_SDRAM_PASR value to specify
which banks are to be refreshed. Applicable
only to low power SDRAM. See “ADI_EBIU_
CMD_SET_SDRAM_SCTLE” on page 4-31.

ADI_EBIU_CMD_SET_SDRAM_TCSR An ADI_EBIU_SDRAM_TCSR value to specify
the temperature compensated self-refresh
value. This command can only be used for low
power SDRAM. See “ADI_EBIU_SDRAM_
PASR” on page 4-32.

ADI_EBIU_CMD_SET_SDRAM_SCTLE An ADI_EBIU_SDRAM_SCTLE value to specify
whether the SDC is enabled or not. See “ADI_
EBIU_CMD_SET_SDRAM_SCTLE” on
page 4-31.

Commands valid only when passed to the adi_ebiu_Init function:

ADI_EBIU_CMD_PAIR Used to tell adi_ebiu_control that a single
command pair is being passed.

ADI_EBIU_CMD_TABLE Used to tell adi_ebiu_control that a table of
command pairs is being passed.

ADI_EBIU_CMD_SET_SDRAM_ENABLE An ADI_EBIU_SDRAM_ENABLE value to
enable/disable external SDRAM.
Automatically set upon initialization. See
“ADI_EBIU_SDRAM_EZKIT” on page 4-28.

ADI_EBIU_CMD_SET_SDRAM_SRFS An ADI_EBIU_SDRAM_SRFS value to
enable/disable self-refresh of SDRAM during
inactivity. See “ADI_EBIU_SDRAM_TCSR”
on page 4-32.

Table 4-1. ADI_EBIU_COMMAND Data Values (Cont’d)

Command Associated data value

Setting Control Values in the EBIU Module

4-28 Device Drivers and System Services Manual for Blackfin Processors

ADI_EBIU_COMMAND_PAIR
The ADI_EBIU_COMMAND_PAIR data type enables developers to generate a
table of control commands to pass to the EBIU via the adi_ebiu_Init and
adi_ebiu_Control functions:

typedef struct ADI_EBIU_COMMAND_PAIR (

 ADI_EBIU_COMMAND kind;

 void *value;

} ADI_EBIU_COMMAND_PAIR;

Command Value Enumerations
The following enumerations are used to specify the required information
to set up the SDRAM controller. For further information on the values
required, refer to the Engineer-to-Engineer Note EE-210*.

ADI_EBIU_SDRAM_EZKIT

This enumeration defines the EZ-KIT board for which the EBIU module
is to be configured. For Blackfin processors these are:

ADI_EBIU_SDRAM_ENABLE

This enumeration specifies if SDRAM is enabled or disabled. This enu-
meration corresponds to the EBE bit in the EBIU_SDBCTL register.

The default value is specified by the following macro:

* Refer to SDRAM Selection Guidelines and Configuration for ADI Processors, EE-210, October 27,
2003.

ADI_EBIU_EZKIT_BF533 An ADSP-BF533 EZ-KIT LITE board.

ADI_EBIU_EZKIT_BF537 An ADSP-BF537 EZ-KIT LITE board.

Device Drivers and System Services Manual for Blackfin Processors 4-29

External Bus Interface Unit Module

 #define ADI_EBIU_SDRAM_EBE_DEFAULT ADI_EBIU_SDRAM_EBE_DISABLE

ADI_EBIU_SDRAM_BANK_SIZE

This enumeration specifies the SDRAM external bank size. This enumera-
tion corresponds to the EBSZ bits in the EBIU_SDBCTL register.

The default value is specified by the following macro:

 #define ADI_EBIU_SDRAM_BANK_SIZE_DEFAULT ADI_EBIU_SDRAM_BANK_32MB

ADI_EBIU_SDRAM_BANK_COL_WIDTH

This enumeration specifies the SDRAM external bank column address
width and corresponds to the EBCAW bits in the EBIU_SDBCTL register.

The default value is specified by the following macro:

 #define ADI_EBIU_SDRAM_BANK_COL_WIDTH_DEFAULT

 ADI_EBIU_SDRAM_BANK_COL_9BIT

ADI_EBIU_SDRAM_EBE_DISABLE Disables SDRAM.

ADI_EBIU_SDRAM_EBE_ENABLE Enables SDRAM.

ADI_EBIU_SDRAM_BANK_16MB 16MB external SDRAM

ADI_EBIU_SDRAM_BANK_32MB 32MB external SDRAM

ADI_EBIU_SDRAM_BANK_64MB 64MB external SDRAM

ADI_EBIU_SDRAM_BANK_128MB 128MB external SDRAM

ADI_EBIU_SDRAM_BANK_COL_8BIT 8-bit external bank column address width

ADI_EBIU_SDRAM_BANK_COL_9BIT 9-bit external bank column address width

ADI_EBIU_SDRAM_BANK_COL_10BIT 10-bit external bank column address width

ADI_EBIU_SDRAM_BANK_COL_11BIT 11-bit external bank column address width

Setting Control Values in the EBIU Module

4-30 Device Drivers and System Services Manual for Blackfin Processors

ADI_EBIU_SDRAM_MODULE_TYPE

This enumeration specifies the SDRAM module type. The enumerator
values contain the relevant information, for example speed grade and con-
figuration settings required to initialize the SDRAM controller. Since
Analog Devices EZ-Kits include SDRAM supplied by Micron, this infor-
mation applies only to Micron parts. Valid values are:

ADI_EBIU_SDRAM_MODULE_MT48LC16M4A2_6 64Mbit, 4Meg x 4 x 4, speed grade: -6

ADI_EBIU_SDRAM_MODULE_MT48LC8M8A2_6 64Mbit, 2Meg x 8 x 4, speed grade: -6

ADI_EBIU_SDRAM_MODULE_MT48LC4M16A2_6 64Mbit, 1Meg x 16 x 4, speed grade: -6

ADI_EBIU_SDRAM_MODULE_MT48LC16M4A2_7E 64Mbit, 4Meg x 4 x 4, speed grade: -7E

ADI_EBIU_SDRAM_MODULE_MT48LC8M8A2_7E 64Mbit, 2Meg x 8 x 4, speed grade: -7E

ADI_EBIU_SDRAM_MODULE_MT48LC4M16A2_7E 64Mbit, 1Meg x 16 x 4, speed grade: -7E

ADI_EBIU_SDRAM_MODULE_MT48LC16M4A2_75 64Mbit, 4Meg x 4 x 4, speed grade: -75

ADI_EBIU_SDRAM_MODULE_MT48LC8M8A2_75 64Mbit, 2Meg x 8 x 4, speed grade: -75

ADI_EBIU_SDRAM_MODULE_MT48LC4M16A2_75 64Mbit, 1Meg x 16 x 4, speed grade: -75

ADI_EBIU_SDRAM_MODULE_MT48LC16M4A2_8E 64Mbit, 4Meg x 4 x 4, speed grade: -8E

ADI_EBIU_SDRAM_MODULE_MT48LC8M8A2_8E 64Mbit, 2Meg x 8 x 4, speed grade: -8E

ADI_EBIU_SDRAM_MODULE_MT48LC4M16A2_8E 64Mbit, 1Meg x 16 x 4, speed grade: -8E

ADI_EBIU_SDRAM_MODULE_MT48LC32M4A2_6A 128Mbit, 8Meg x 4 x 4, speed grade: -6A

ADI_EBIU_SDRAM_MODULE_MT48LC16M8A2_6A 128Mbit, 4Meg x 8 x 4, speed grade: -6A

ADI_EBIU_SDRAM_MODULE_MT48LC8M16A2_6A 128Mbit, 2Meg x 16 x 4, speed grade: -6A

ADI_EBIU_SDRAM_MODULE_MT48LC32M4A2_7E 128Mbit, 8Meg x 4 x 4, speed grade: -7E

ADI_EBIU_SDRAM_MODULE_MT48LC16M8A2_7E 128Mbit, 4Meg x 8 x 4, speed grade: -7E

ADI_EBIU_SDRAM_MODULE_MT48LC8M16A2_7E 128Mbit, 2Meg x 16 x 4, speed grade: -7E

ADI_EBIU_SDRAM_MODULE_MT48LC32M4A2_75 128Mbit, 8Meg x 4 x 4, speed grade: -75

ADI_EBIU_SDRAM_MODULE_MT48LC16M8A2_75 128Mbit, 4Meg x 8 x 4, speed grade: -75

ADI_EBIU_SDRAM_MODULE_MT48LC8M16A2_75 128Mbit, 2Meg x 16 x 4, speed grade: -75

ADI_EBIU_SDRAM_MODULE_MT48LC32M4A2_8E 128Mbit, 8Meg x 4 x 4, speed grade: -8E

Device Drivers and System Services Manual for Blackfin Processors 4-31

External Bus Interface Unit Module

ADI_EBIU_CMD_SET_SDRAM_SCTLE

This enumeration specifies if the SDRAM controller is enabled or disabled
and corresponds to the SCTLE bit in the EBIU_SDGCTL register.

ADI_EBIU_SDRAM_EMREN

This enumeration specifies that low power (2.5V) SDRAM is to be used
and corresponds to the EMREN bit in the EBIU_SDGCTL register:

ADI_EBIU_SDRAM_MODULE_MT48LC16M8A2_8E 128Mbit, 4Meg x 8 x 4, speed grade: -8E

ADI_EBIU_SDRAM_MODULE_MT48LC8M16A2_8E 128Mbit, 2Meg x 16 x 4, speed grade: -8E

ADI_EBIU_SDRAM_MODULE_MT48LC64M4A2_7E 256Mbit, 16Meg x 4 x 4, speed grade: -7E

ADI_EBIU_SDRAM_MODULE_MT48LC32M8A2_7E 256Mbit, 8Meg x 8 x 4, speed grade: -7E

ADI_EBIU_SDRAM_MODULE_MT48LC16M16A2_
7E

256Mbit, 4Meg x 16 x 4, speed grade: -7E

ADI_EBIU_SDRAM_MODULE_MT48LC64M4A2_75 256Mbit, 16Meg x 4 x 4, speed grade: -75

ADI_EBIU_SDRAM_MODULE_MT48LC32M8A2_75 256Mbit, 8Meg x 8 x 4, speed grade: -75

ADI_EBIU_SDRAM_MODULE_MT48LC16M16A2_
75

256Mbit, 4Meg x 16 x 4, speed grade: -75

ADI_EBIU_SDRAM_MODULE_MT48LC64M8A2_7E 512Mbit, 16Meg x 8 x 4, speed grade: -7E

ADI_EBIU_SDRAM_MODULE_MT48LC32M16A2_
7E

512Mbit, 8Meg x 16 x 4, speed grade: -7E

ADI_EBIU_SDRAM_MODULE_MT48LC64M8A2_75 512Mbit, 16Meg x 8 x 4, speed grade: -75

ADI_EBIU_SDRAM_MODULE_MT48LC32M16A2_
75

512Mbit, 8Meg x 16 x 4, speed grade: -75

ADI_EBIU_SDRAM_SCTLE_DISABLE Disable SDRAM Controller.

ADI_EBIU_SDRAM_SCTLE_ENABLE Enable SDRAM Controller.

ADI_EBIU_SDRAM_EMREN_DISABLE Mobile low power SDRAM is not present.

ADI_EBIU_SDRAM_EMREN_ENABLE Mobile low power SDRAM is present.

Setting Control Values in the EBIU Module

4-32 Device Drivers and System Services Manual for Blackfin Processors

The default value is specified by the following macro:

 #define ADI_EBIU_SDRAM_EMREN_DEFAULT ADI_EBIU_SDRAM_EMREN_DISABLE

ADI_EBIU_SDRAM_PASR

When low power (2.5V) SDRAM is used, this enumeration specifies
which banks are to be refreshed. This enumeration corresponds to the
PASR bits in the EBIU_SDGCTL register:

The default value is specified by the following macro:

 #define ADI_EBIU_SDRAM_PASR_DEFAULT ADI_EBIU_SDRAM_PASR_ALL

ADI_EBIU_SDRAM_TCSR

When low power (2.5V) SDRAM is used, this enumeration specifies the
temperature compensated self-refresh value and corresponds to the TCSR
bits in the EBIU_SDGCTL register.

The default value is specified by the following macro:

 #define ADI_EBIU_SDRAM_TCSR_DEFAULT ADI_EBIU_SDRAM_TCSR_45DEG

ADI_EBIU_SDRAM_PASR_ALL All four SDRAM banks are to be refreshed.

ADI_EBIU_SDRAM_PASR_INT01 Internal SDRAM banks 0 and 1 are to be refreshed.

ADI_EBIU_SDRAM_PASR_INT01_ONLY Internal SDRAM banks 0 and 1 only to be refreshed.

ADI_EBIU_SDRAM_TCSR_45DEG The SDRAM banks are to be refreshed if the
temperature exceeds 45 degrees Celsius.

ADI_EBIU_SDRAM_TCSR_85DEG The SDRAM banks are to be refreshed if the
temperature exceeds 85 degrees Celsius.

Device Drivers and System Services Manual for Blackfin Processors 4-33

External Bus Interface Unit Module

ADI_EBIU_SDRAM_SRFS

This enumeration specifies if the EBIU is to enable/disable SDRAM
self-refresh during periods of inactivity. This enumeration corresponds to
the SRFS bit in the EBIU_SDGCTL register. For example, SDRAM
self-refresh is enabled when the Processor mode is put into the “deep
sleep” via the Power Management Module. For more information, see
“Power Management Module” on page 3-1.

The default value is specified by the following macro:

 #define ADI_EBIU_SDRAM_SRFS_DEFAULT ADI_EBIU_SDRAM_SRFS_DISABLE

ADI_EBIU_SDRAM_EBUFE

This enumeration specifies whether or not the EBIU uses external buffers
when several SDRAM devices are being used in parallel. This enumeration
corresponds to the EBUFE bit in the EBIU_SDGCTL register.

The default value is specified by the following macro:

 #define ADI_EBIU_SDRAM_EBUFE_DEFAULT ADI_EBIU_SDRAM_EBUFE_DISABLE

ADI_EBIU_SDRAM_PUPSD

This enumeration specifies whether or not the power-up start sequence is
to be delayed by 15 SCLK cycles. This enumeration corresponds to the
PUPSD bit in the EBIU_SDGCTL register.

ADI_EBIU_SDRAM_SRFS_DISABLE Disable SDRAM self-refresh on inactivity.

ADI_EBIU_SDRAM_SRFS_ENABLE Enable SDRAM self-refresh on inactivity.

ADI_EBIU_SDRAM_EBUFE_DISABLE Disable the use of external buffers when several
SDRAM devices are being used in parallel.

ADI_EBIU_SDRAM_EBUFE_ENABLE Enable the use of external buffers when several
SDRAM devices are being used in parallel.

Setting Control Values in the EBIU Module

4-34 Device Drivers and System Services Manual for Blackfin Processors

The default value is specified by the following macro:

 #define ADI_EBIU_SDRAM_PUPSD_DEFAULT ADI_EBIU_SDRAM_PUPSD_NODELAY

ADI_EBIU_SDRAM_PSM

This enumeration specifies the SDRAM power-up sequence. This enu-
meration corresponds to the PSM bit in the EBIU_SDGCTL register.

The default value is specified by the following macro:

 #define ADI_EBIU_SDRAM_PSM_DEFAULT ADI_EBIU_SDRAM_PSM_REFRESH_FIRST

ADI_EBIU_SDRAM_FBBRW

This enumeration specifies whether or not the EBIU uses fast
back-to-back read-write access to allow SDRAM read and write operations
on consecutive cycles. This enumeration corresponds to the FBBRW bit in
the EBIU_SDGCTL register.

ADI_EBIU_SDRAM_PUPSD_NODELAY No delay to the power-up start sequence.

ADI_EBIU_SDRAM_PUPSD_15CYCLES The power-up start sequence is to be delayed by 15
SCLK cycles.

ADI_EBIU_SDRAM_PSM_REFRESH_FIRST The SDC is to perform a Precharge All
command, followed by eight Auto-Refresh cycles,
and then a Load Mode Register command.

ADI_EBIU_SDRAM_PSM_REFRESH_LAST The SDC performs a Precharge All command,
followed by a Load Mode Register command,
and then completes eight Auto-Refresh cycles.

ADI_EBIU_SDRAM_FBBRW_DISABLE Fast back-to-back read-write access disabled.

ADI_EBIU_SDRAM_FBBRW_ENABLE SDRAM read and write operations to occur on
consecutive cycles.

Device Drivers and System Services Manual for Blackfin Processors 4-35

External Bus Interface Unit Module

The default value is specified by the following macro:

 #define ADI_EBIU_SDRAM_FBBRW_DEFAULT ADI_EBIU_SDRAM_FBBRW_DISABLE

ADI_EBIU_SDRAM_CDDBG

This enumeration enables or disables the SDRAM control signals when
the external memory interface is granted to an external controller. This
enumeration corresponds to the CDDBG bit in the EBIU_SDGCTL register.

The default value is specified by the following macro:

 #define ADI_EBIU_SDRAM_CDDBG_DEFAULT ADI_EBIU_SDRAM_CDDBG_DISABLE

ADI_EBIU_SDRAM_CDDBG_DISABLE Disable the SDRAM control signals when the
external memory interface is granted to an external
controller.

ADI_EBIU_SDRAM_CDDBG_ENABLE Enable the SDRAM control signals when the
external memory interface is granted to an external
controller.

Setting Control Values in the EBIU Module

4-36 Device Drivers and System Services Manual for Blackfin Processors

Device Drivers and System Services Manual for Blackfin Processors 5-1

5 DEFERRED CALLBACK
MANAGER

This chapter describes the Deferred Callback Manager that is used by the
application developer to manage the deferred execution of function calls.
Included is a detailed description of the Application Programming Inter-
face (API) provided by the Deferred Callback Manager.

This chapter contains:

• “Introduction” on page 5-2

• “Interoperability With an RTOS” on page 5-7

• “Using the Deferred Callback Manager” on page 5-3

• “DCB Manager API Reference” on page 5-10

• “Public Data Types and Macros” on page 5-24

Introduction

5-2 Device Drivers and System Services Manual for Blackfin Processors

Introduction
Callback functions are commonly used in event driven applications where
the client application requests that a Service Manager, such as the System
Services Library’s (SSL) DMA Manager, notifies it upon completion of a
requested task, for example the completion of DMA transfer, by means of
a Client Callback Function specified by the client application upon ini-
tialization of the required service.

The need to execute a client callback function normally occurs while exe-
cuting an Interrupt Service Routine (ISR) at relatively high priority. The
general rule for such ISR’s is to keep the amount of time spent in them as
deterministic as possible and to a minimum. Callbacks on the other hand
may be both lengthy and non-deterministic. In most cases, users may pre-
fer to defer the execution of such callbacks to a scheduler running at a
lower priority, which can be preempted by higher priority interrupts. In
doing so, the requesting ISR can complete with minimal delay.

The System Services Library’s Deferred Callback (DCB) Manager pro-
vides such a service by managing one or more queues of deferred callbacks
such that (typically) their invocation occurs within a dispatch function
operating at a lower interrupt priority than the rest of the application’s
interrupt services. Each callback entry posted to a queue comprises the
address of the required callback function along with three values (two
pointers and one 32-bit unsigned integer), which are passed to the call-
back function upon its (deferred) execution.

The DCB Manager is designed to operate either as a standalone module or
in conjunction with a real-time operating system (RTOS). Implementa-
tions of the module exist for Express Logic’s ThreadX, Green Hills
Software’ Integrity, as well as Analog Devices VDK. The number of
queues available and their length is determined by the client application
upon module and queue initialization. Whether or not the DCB Manager
is implemented in standalone mode or in conjunction with one of the

Device Drivers and System Services Manual for Blackfin Processors 5-3

Deferred Callback Manager

above RTOS also impacts the number and size of queues. For instance
when implemented in conjunction with VDK, the DCB Manager can
only support one queue at a fixed priority level of IVG 14.

While only one queue is permitted per IVG level, engineers can set priori-
ties for individual callback entries by supplying a software priority level
upon posting. There is no limit to the number of software priority levels
that can be used (except for practical implications within the limits of an
unsigned short values) The dispatch function attempts to execute all
higher priority callbacks before those with lower priorities at the same
IVG level.

A detailed description of how the DCB Manager operates is provided in
“Using the Deferred Callback Manager” on page 5-3, along with code seg-
ments illustrating its use in standalone mode, and the implications for its
use in conjunction with an RTOS are given in Interoperability With an
RTOS.

The DCB manager uses an unambiguous naming convention to safeguard
against conflicts with other software libraries provided by ADI or other
companies. As a result, all enumeration values and typedefs use the ADI_
DCB_ prefix, while functions and global variables use the lower case, adi_
dcb_, equivalent.

Using the Deferred Callback Manager
The operation of the DCB Manager comprises the following operations.

• Setting up the DCB Manager

• Initializing the DCB Manager

• Opening a queue

Using the Deferred Callback Manager

5-4 Device Drivers and System Services Manual for Blackfin Processors

• Managing the queue

• Posting callbacks to the required queue

• Dispatching callbacks according to the priority level deter-
mined upon posting.

• Performing housekeeping functions

• Closing the queue

• Terminating the DCB Manager

Exactly how this is implemented depends on whether the DCB manager is
used in standalone mode or in conjunction with the deferred calling
mechanism supplied by an RTOS. In all cases the API calls to the DCB
Manager are the same: A queue is initialized with a call to adi_dcb_Open,
and callbacks added to the queue via a call to the adi_dcb_Post function.

The deferred execution of the callbacks is scheduled according to software
priority by the adi_dcb_Dispatch_Callbacks function. In the standalone
environment, the DCB Manager registers this function as an Interrupt
Handler routine against the desired IVG level, using the System Services
Library’s Interrupt Manager module, when the queue is initialized, and an
interrupt raised each time a callback is posted. Since the standalone ver-
sion uses the Interrupt Manager, the Interrupt Manager must be
initialized before the DCB Manager is initialized.

The following code sample demonstrates the standalone use of one queue
initialized at IVG level 14, which is the lowest IVG level available at appli-
cation level.

Device Drivers and System Services Manual for Blackfin Processors 5-5

Deferred Callback Manager

As mentioned above, for standalone operation we need to initialize the
interrupt manager prior to initializing the DCB Manager. On the assump-
tion that the sample application requires only one interrupt handler to be
defined per IVG level, initialize the Interrupt Manager using the following
code:

u32 ne;

adi_int_Init(NULL,0,&ne,NULL);

Initialize the DCB manager with sufficient memory for one queue as
follows:

static char mjk_dcb_Data[ADI_DCB_QUEUE_SIZE];

:

u32 ns;

:

adi_dcb_Init(

 (void*)mjk_dcb_Data, // Address of memory to be used

 ADI_DCB_QUEUE_SIZE, // Number of bytes required for the

 // required number of queue servers.

 &ns // on return this should be the same

 // as the required number of queues.

 NULL // No special data area for critical

 // region required

);

Next, open the queue server for use by passing sufficient memory for the
length of queue required (five entries in this case), and the desired IVG
level at which the queue operates. This level is ignored if it is used within
a VDK-based application. A handle, p_DCB_handle, to the queue server is
returned:

static char mjk_dcb_QueueData[5*ADI_DCB_ENTRY_SIZE];

ADI_DCB_HANDLE p_DCB_handle;

:

Using the Deferred Callback Manager

5-6 Device Drivers and System Services Manual for Blackfin Processors

u32 nqe;

:

adi_dcb_Open(

 14, // required IVG level

 (void*) mjk_dcb_QueueData, // Address of memory to be used

 5*ADI_DCB_ENTRY_SIZE, // for a queue 5 deep.

 &nqe; // on return this should be the

 // same as the required number of

 // entries (5 in this case).

 &p_DCB_handle // returned handle to queue server

);

The DCB Manager is now ready to accept callback postings to the queue
server. Note that this function is normally performed in an ISR of another
Service. The DCB Manager passes the address of the client callback func-
tion and its associated argument values to the queue server identified by
the handle obtained:

adi_dcb_Post(

 p_DCB_handle, // handle to required queue server.

 0, // Priority level.

 ClientCallback, // Address of callback function.

 pService, // Address of the service instance

 // that is posting the callback.

 event, // Flag identifying the event that

 // has precipitated the interrupt.

 (void*)data // Address of data relevant to the

 // callback.

);

Where event typically defines some event, for example DMA completion,
and data typically points to an appropriate location in memory meaning-
ful within the context of the callback function. Within the DMA Manager
context, this argument is either the address of an appropriate descriptor or
data buffer.

Device Drivers and System Services Manual for Blackfin Processors 5-7

Deferred Callback Manager

If, for any reason, users want to flush the queue of entries for the above
callback, this can be achieved in one of two ways. Either users can call the
adi_dcb_Remove function directly or call it indirectly using the adi_dcb_
Control function. See adi_dcb_Terminate for further details and an exam-
ple of its use), along with any other requests. The following code describes
the direct approach:

adi_dcb_Remove(

 p_DCB_handle, // handle to required queue server

 ClientCallback // Address of callback function to

 // flush

);

Finally, if required, the queue can be closed and the DCB Manager
terminated:

adi_dcb_Close(

 p_DCB_handle, // handle to required queue server

);

adi_dcb_Terminate();

Interoperability With an RTOS
The DCB manager employs two functions, adi_dcb_RegisterISR and
adi_dcb_Forward, to interface with the different RTOS environments,
including standalone mode.

These functions are supplied in a separate source file, adi_dcb_xxxx.c for
each implementation where xxxx describes either the required RTOS (for
example, threadx for Express Logic’s ThreadX, and integrity for Green
Hill Software’s Integrity), or standalone for standalone use. VDK support
is achieved with the functions described above supplied directly by VDK.
As a result, there is no equivalent adi_dcb_vdk.c file. The relevant adi_

Interoperability With an RTOS

5-8 Device Drivers and System Services Manual for Blackfin Processors

dcb_xxxx.c file is incorporated (or not) into the main adi_dcb.c source
file via conditional compilation governed by a macro, ADI_SSL_XXXX,
where XXXX is STANDALONE, THREADX, INTEGRITY or VDK.

Currently implementations of the DCB Manager are only provided for the
environments previously described. To implement these functions under
an alternative RTOS (for example, Linux), developers must provide
replacement definitions in equivalent files.

These functions are now described in more detail:

adi_dcb_Forward
The adi_dcb_Forward function takes two arguments. The first is a pointer
to the DCB entry header structure, ADI_DCB_ENTRY_HDR, and the second is
to the IVG level of the appropriate queue.

The adi_dcb_Forward function is invoked from within the adi_dcb_Post
function and has the following prototype:

 void adi_dcb_Forward(
 ADI_DCB_ENTRY_HDR *Entry,
 u16 IvgLevel

);

The arguments are as follows:

Entry Pointer to the ADI_DCB_ENTRY_HDR structure. This is
coincident with the address of the queue server structure to
which the callback is to be posted. Ignored in standalone
mode.

IvgLevel The IVG level of the appropriate queue. This argument is
ignored by VDK.

Device Drivers and System Services Manual for Blackfin Processors 5-9

Deferred Callback Manager

The ADI_DCB_ENTRY_HDR structure used to pass information to the under-
lying RTOS is defined as:

typedef struct ADI_DCB_ENTRY_HDR {

 struct ADI_DCB_ENTRY_HDR *pNext;

 ADI_DCB_DEFERRED_FNpDeferredFunction;

} ADI_DCB_ENTRY_HDR;

The first word in this structure, pNext, is NULL on entry to the adi_dcb_
Forward function. While this value is typically used to point to the next
item in the queue, its interpretation within the adi_dcb_Forward function
is wholly dependent on the specific RTOS implementation required. The
second word, pDeferredFunction, is set to point to the adi_dcb_Dis-
patchCallbacks function when the queue is initialized. The Deferred
Procedure Call server within the appropriate RTOS must pass the pointer
to this structure to the adi_dcb_DispatchCallbacks function upon its
deferred execution.

adi_dcb_RegisterISR
The adi_dcb_RegisterISR function is invoked from within the adi_dcb_
Open function and has the following prototype:

 void adi_dcb_RegisterISR(

 u16 IvgLevel,

 ADI_INT_HANDLER_FN Dispatcher,

 ADI_DCB_HANDLE *hServer

);

The data types are defined in the <services/services.h> header file and
the arguments are as follows:

IvgLevel The interrupt level at which callbacks are to be dispatched.

DCB Manager API Reference

5-10 Device Drivers and System Services Manual for Blackfin Processors

In the standalone implementation this function registers the adi_dcb_Dis-
patchCallbacks function with the interrupt manager at the specified
interrupt level. In the VDK implementation, it returns with no effect.

Handling Critical Regions within Callbacks
If within a callback function critical regions are required, users should be
aware of any restrictions the underlying RTOS imposes. For example,
VDK based applications are prohibited from calling PushCriticalRe-
gion/PopCriticalRegion functions from within interrupt level. If the
VDK version of the DCB Manager is used these kinds of calls can be used,
as the callback is executed at kernel level. However, if the standalone ver-
sion of the library is used to run a DCB queue at a higher priority than the
VDK DPC queue, such calls are illegal since the callback executes at the
interrupt level. In these cases, effect critical regions directly, for example,
by using the cli(), sti() built-ins.

DCB Manager API Reference
This section provides descriptions of the DCB Manager API functions.

Notation Conventions
The reference pages for the API functions use the following format:

Name and purpose of the function

Description – Function specification

Prototype – Required header file and functional prototype

Dispatcher This must be the address of the adi_dcb_DispatchCall-
backs function.

hServer The address of the queue server structure.

Device Drivers and System Services Manual for Blackfin Processors 5-11

Deferred Callback Manager

Arguments – Description of function arguments

Return Value – Description of function return values

DCB Manager API Reference

5-12 Device Drivers and System Services Manual for Blackfin Processors

adi_dcb_Close

Description

This function closes the DCB queue server identified by the single handle
argument, freeing up the slot for subsequent use. In standalone mode, the
DCB Manager’s adi_dcb_DispatchCallbacks function is unhooked from
the interrupt handler chain for the given IVG Level.

Prototype

ADI_DMA_RESULT

adi_dcb_Close(

 ADI_DCB_HANDLE hServer

);

Arguments

Return Value

In debug mode this routine returns ADI_DCB_RESULT_NO_SUCH_QUEUE if the
handle provided does not represent a valid queue server registered with the
DCB Manager. Otherwise ADI_DCB_RESULT_SUCCESS is returned.

hServer The handle of the required queue server to be closed.

ADI_DCB_RESULT_SUCCESS Queue successfully closed.

ADI_DCB_RESULT_NO_SUCH_
QUEUE

The handle provided does not represent a valid queue server.

ADI_DCB_RESULT_QUEUE_IN_
USE

Callbacks are on the queue awaiting dispatch. If this does
not matter, then flush the queue first before closing.

Device Drivers and System Services Manual for Blackfin Processors 5-13

Deferred Callback Manager

adi_dcb_Control

Description

This function is used to configure/control a deferred callback queue server
according to command-value pairs (see “ADI_DCB_COMMAND_
PAIR” on page 5-25). Currently, only one command is relevant, ADI_DCB_
CMD_FLUSH_QUEUE, though others may be added in the future. The com-
mand-value pairs can be specified in one of three ways:

• A single command-value pair is passed:

adi_dcb_Control(

 hServer,

 ADI_DCB_CMD_FLUSH_QUEUE,

 (void*)ClientCallback

);

• A single command-value pair structure is passed, for example:

ADI_DCB_COMMAND_PAIR cmd=

 {ADI_DCB_CMD_FLUSH_QUEUE, (void *)ClientCallback};

adi_dcb_Control(

 hServer,

 ADI_DCB_CMD_PAIR,

 (void*)&cmd

);

DCB Manager API Reference

5-14 Device Drivers and System Services Manual for Blackfin Processors

• A table of ADI_DCB_COMMAND_PAIR structures is passed. The last
entry in the table must be ADI_DCB_CMD_END:

ADI_DCB_COMMAND_PAIR table[2] = {

 {ADI_DCB_CMD_FLUSH_QUEUE, (void*)ClientCallback,

 {ADI_DCB_CMD_END, O}

);

adi_dcb_Control(

 hServer,

 ADI_DCB_CMD_TABLE,

 (void*)table

);

Refer to “ADI_DCB_COMMAND” on page 5-26 for the complete list of
commands and associated values.

Prototype

ADI_DMA_RESULT
adi_dcb_Control(

 ADI_DCB_HANDLE hServer,

 ADI_DCB_COMMAND command,
 void *value
);

Arguments

hServer This is the handle of the required queue server to be closed.

command This is an ADI_DCB_COMMAND enumeration value specifying
the meaning of the associated value argument (see “ADI_
DCB_COMMAND” on page 5-26).

value This is the required value. A single value or a com-
mand-value pair or a table of command-value pairs.

Device Drivers and System Services Manual for Blackfin Processors 5-15

Deferred Callback Manager

Return Value

In debug mode, this routine returns one of the following result codes, oth-
erwise ADI_DCB_RESULT_SUCCESS is always returned:

ADI_DCB_RESULT_NO_SUCH_
QUEUE

This is the handle of the required queue server is invalid.

ADI_DCB_RESULT_BAD_COM-
MAND

Either the command kind or the value specified is invalid.

DCB Manager API Reference

5-16 Device Drivers and System Services Manual for Blackfin Processors

adi_dcb_Init

Description

The adi_dcb_Init function initializes the DCB Manager with sufficient
memory for the required number of Deferred Callback Queues (referred
to as Queue Servers).

This function can be called once per processor core.

Prototype

ADI_DCB_RESULT
adi_dcb_Init(

 void *ServerMemData,
 size_t szServer,

 unsigned int *NumServers

 void *hCriticalRegionData

);

Device Drivers and System Services Manual for Blackfin Processors 5-17

Deferred Callback Manager

Arguments

Return Value

In debug mode this routine returns one of the following result codes, oth-
erwise ADI_DCB_RESULT_SUCCESS is always returned:

ServerMemData This is the pointer to an area of memory, which is used to
hold the data associated with each registered queue server.

szServer This is the length in bytes of memory being supplied for the
queue server data

NumServers On return, this argument holds the maximum number of
simultaneously open queue servers that the supplied memory
can support.

hCriticalRegionData This is the handle to data area containing critical region data.
This will be passed to adi_int_EnterCriticalRegion
where used internally of the module. See “Interrupt Man-
ager” on page 2-1 for further details.

ADI_DCB_RESULT_SUCCESS Successfully initialized the queue server

ADI_DCB_RESULT_NO_MEMORY Insufficient memory for one queue entry was encountered.

ADI_DCB_RESULT_CALL_
IGNORED

The DBG Manager has already been initialized for this
processor core.

DCB Manager API Reference

5-18 Device Drivers and System Services Manual for Blackfin Processors

adi_dcb_Open

Description

The adi_dcb_Open function opens a queue server for use by assigning
memory for its callback queue. Additionally, in standalone mode, the
queue is assigned to the requested IVG priority level and the DCB Man-
ager’s adi_dcb_DispatchCallbacks function is hooked to the interrupt
handler chain with the Interrupt Manager for the given IVG Level.

Users must initialize the Interrupt Manager prior to opening a
queue server.

Prototype

ADI_DCB_RESULT adi_dcb_Open (
 u32 IvgLevel,

 void *QueueMemData,
 size_t szQueue,

 u32 *NumEntries,
 ADI_DCB_HANDLE *hServer
);

Device Drivers and System Services Manual for Blackfin Processors 5-19

Deferred Callback Manager

Arguments

Return Value

In debug mode, this routine returns one of the following result codes, oth-
erwise ADI_DCB_RESULT_SUCCESS is always returned.

IvgLevel The IVG level at which the DCB Manager’s dispatcher
function is to operate. This value is ignored in the VDK
version of the library.

QueueMemData This is the pointer to an area of memory, which is used to
hold the data associated with the server’s entry queue.

szQueue This is the length in bytes of memory being supplied for the
queue.

NumEntries On return, this argument holds the maximum number of
queue entries that the supplied memory can support.

hServer On return, this argument contains a handle to the queue
server opened. This should be used to uniquely identify the
queue server in calls to other API functions within the SSL.

ADI_DCB_RESULT_SUCCESS The queue server was successfully initialized.

ADI_DCB_RESULT_NO_MEMORY Insufficient memory for one queue entry was encountered.

ADI_DCB_RESULT_QUEUE_IN_
USE

A queue server has already been opened for use by the
specified IVG.

DCB Manager API Reference

5-20 Device Drivers and System Services Manual for Blackfin Processors

adi_dcb_Post

Description

This function posts a callback function and associated argument values to
the queue server, identified by the handle argument for further processing.

A callback is associated with a priority level, so that higher priority call-
backs run before lower priority ones. To run all callbacks at the same
priority level, assign the same priority to each callback posted.

Prototype

ADI_DCB_RESULT adi_dcb_Post(

 ADI_DCB_HANDLE *hServer,

 u16 Priority;
 ADI_DCB_CALLBACK_FN Callback,
 void *pHandle,

 u32 u32Arg,

 void *pArg

);

Arguments

hServer This is the handle of the required queue server.

Priority This is the priority level at which the callback is to run, the
lower the number the higher the priority. There is no real
limit on the value supplied.

Callback This is the address of the client callback function to be
queued.

Device Drivers and System Services Manual for Blackfin Processors 5-21

Deferred Callback Manager

Return Value

In debug mode, this routine returns one of the following result codes; oth-
erwise, ADI_DCB_RESULT_SUCCESS is always returned.

pHandle This is the a void* address which is to be passed as the first
argument to the callback function upon its deferred
execution.
Typically it will be a handle address that is meaningful
within the context of the callback function. For example,
when used within the interrupt handler of the DMA manger
this argument is the ClientHandle value defined when the
DMA channel was opened.

u32Arg A u32 value which is to be passed as the second argument to
the callback function upon its deferred execution (see “ADI_
DCB_CALLBACK_FN” on page 5-24). Typically, it will be
a value that is meaningful within the context of the callback
function. For example, when used within the interrupt han-
dler of the DMA manger this argument describes the nature
of the event that has occurred.

pArg The void* value which is to be passed as the third argument
to the callback function (see “ADI_DCB_CALLBACK_FN”
on page 5-24) upon its deferred execution. Typically, it will
be an address of a block of data. For example, when called
within the interrupt handler of the DMA Manager this argu-
ment points to the start of the buffer for which the DMA
transfer has completed.

ADI_DCB_RESULT_SUCCESS The entry was successfully queued.

ADI_DCB_RESULT_NO_MEMORY There is no vacant queue entry available.

ADI_DCB_RESULT_NO_SUCH_
QUEUE

The handle provided does not represent a valid queue server.

DCB Manager API Reference

5-22 Device Drivers and System Services Manual for Blackfin Processors

adi_dcb_Remove

Description

This function removes entries in the given queue that matches the address
of the given callback function. Alternatively, passing a NULL value for the
callback function address, instructs the callback manager to remove all
entries in the queue.

Prototype

ADI_DCB_RESULT adi_dcb_Remove(

 ADI_DCB_HANDLE hServer,

 ADI_DCB_CALLBACK_FN Callback
);

Arguments

Return Value

In debug mode this routine returns one of the following result codes, oth-
erwise ADI_DCB_RESULT_FLUSHED_OK is always returned:

hServer This is the handle of the required queue server.

Callback This is the address of the client callback function to be
removed. If NULL then all entries in the queue will be
removed, otherwise all entries matching the given callback
function address is removed.

ADI_DCB_RESULT_FLUSHED_OK Entries were successfully removed.

ADI_DCB_RESULT_NONE_
FLUSHED

The routine found no entries to be removed.

ADI_DCB_RESULT_NO_SUCH_
QUEUE

The handle provided does not represent a valid queue server.

Device Drivers and System Services Manual for Blackfin Processors 5-23

Deferred Callback Manager

adi_dcb_Terminate

Description

This function terminates the DCB Manager by dissociating the supplied
memory (see adi_dcb_Init) and Critical region data.

Prototype

ADI_DCB_RESULT

adi_dcb_Terminate (void);

Return Value

ADI_DCB_RESULT_SUCCESS is always returned.

Public Data Types and Macros

5-24 Device Drivers and System Services Manual for Blackfin Processors

Public Data Types and Macros
This section provides descriptions of the public data types and macros.

ADI_DCB_CALLBACK_FN

The ADI_DCB_CALLBACK_FN typedef defines the prototype for the callback
functions to be posted:

typedef void (*ADI_DCB_CALLBACK_FN) (void* pHandle, u32 u32Arg,

void* pArg);

Where the values of the arguments are those passed to the adi_dcb_Post
function when the callback is queued for deferred execution.

Device Drivers and System Services Manual for Blackfin Processors 5-25

Deferred Callback Manager

ADI_DCB_COMMAND_PAIR

This data type is used to enable the generation of a table of control com-
mands to be sent to the DCB Manager via the adi_dcb_Control function.

typedef struct ADI_DCB_COMMAND_PAIR {
 ADI_DCB_COMMAND kind;
 void *value;
} ADI_DCB_COMMAND_PAIR;

For valid values for the kind field refer to “ADI_DCB_COMMAND” on
page 5-26. For example, the following command could be sent to the
DCB Manager to flush all callbacks in the queue:

ADI_DCB_COMMAND_PAIR CMD = { ADI_DCB_CMD_FLUSH_QUEUE, NULL };

Public Data Types and Macros

5-26 Device Drivers and System Services Manual for Blackfin Processors

ADI_DCB_COMMAND

The ADI_DCB_COMMAND is used to control the DCB Manager’s queue server.
This data type is used in an ADI_DCB_COMMAND_PAIR couplet to change a
configuration value in calls to adi_dcb_Control.

ADI_DCB_ENTRY_HDR

The ADI_DCB_ENTRY_HDR structure is provided to interface with the under-
lying RTOS through the adi_dcb_Forward function (see “adi_dcb_
Forward” on page 5-8):

typedef struct ADI_DCB_ENTRY_HDR (
 struct ADI_DCB_ENTRY *pNext; // Next item in queue
 ADI_DCB_DEFERRED_FN pDeferredFunction; // Deferred Callback
 // Function pointer,
} ADI_DCB_ENTRY_HDR;

Where pNext points to the next item in the queue and pDeferredFunction
is the address of the deferred function, which is always the address of adi_
dcb_DispatchCallbacks.

Command Associated Data Value

ADI_DCB_CMD_END This command defines the end of a table of command pairs.

ADI_DCB_CMD_PAIR This command is used to tell adi_dcb_Control that a
single command pair is being passed.

ADI_DCB_CMD_TABLE This command is used to tell adi_dcb_Control that a table
of command pairs is being passed.

ADI_DCB_CMD_FLUSH_QUEUE The address of the callback function for which all matching
queue entries are cleared from the queue regardless of
priority.

Device Drivers and System Services Manual for Blackfin Processors 5-27

Deferred Callback Manager

The ADI_DCB_DEFERRED_FN typedef defines the prototype for this
function:

typedef void (*ADI_DCB_DEFERRED_FN) (ADI_DCB_ENTRY *);

ADI_DCB_RESULT

All public DCB Manager functions return a result code of the ADI_DCB_
RESULT data type. Possible values are:

ADI_DCB_RESULT_SUCCESS The queue server was successfully initialized.

ADI_DCB_RESULT_NO_MEMORY Insufficient memory for one queue entry was present.

ADI_DCB_RESULT_QUEUE_IN_
USE

A queue server has already been opened for use by the (see
“ADI_DCB_COMMAND” on page 5-26) specified IVG.

ADI_DCB_RESULT_CALL_
IGNORED

The DBG Manager has already been initialized for this (see
“ADI_DCB_COMMAND” on page 5-26) processor core.

ADI_DCB_RESULT_NO_SUCH_
QUEUE

The handle provided does not represent a valid queue server
registered with the DCB Manager.

ADI_DCB_RESULT_BAD_COM-
MAND

Either the command kind or the value specified is invalid.

Public Data Types and Macros

5-28 Device Drivers and System Services Manual for Blackfin Processors

Device Drivers and System Services Manual for Blackfin Processors 6-1

6 DMA MANAGER

This chapter describes Direct Memory Access (DMA) Manager features
and Application Programming Interface (API).

This chapter contains:

• “Introduction” on page 6-1

• “DMA Manager API Reference” on page 6-32

• “Public Data Structures, Enumerations and Macros” on page 6-53

Introduction
The DMA Manager provides the application developer with the means to
manage DMA traffic on as many channels as required across the spec-
trum—from setting up the DMA channels for their intended purpose, to
providing callbacks, to the client application on transfer completion.

As part of the System Services, the DMA Manager provides a complete
and easy-to-use interface to the DMA controller. To this end, the DMA
Manager is designed to:

• Remove the need for direct client access to memory mapped regis-
ters (MMR) through the implementation of API function calls.

• Place no limitations on the type of data transfer—all descriptor
types are supported as well as both single and circular buffers. Both
one-dimensional (1D) or two-dimensional (2D) DMA can be used.

Theory of Operation

6-2 Device Drivers and System Services Manual for Blackfin Processors

• Provide a simple interface to perform block copies of data between
different memory locations using both 1D and 2D Memory DMA,
such that blocks of data can be copied between internal and exter-
nal memory with one function call in an equivalent manner to the
C library memcpy function.

• Interpret interrupts raised on DMA transfer completion and pass
higher-level event information to the user-supplied callback func-
tions. For example, if an interrupt is raised on each inner loop of a
circular 2D DMA transfer, an event can be passed to the callback
function at the completion of each inner loop.

• Minimize the memory used by the module. No static memory
space is set aside within the API framework to hold the configura-
tion details for each channel. Instead, a mechanism is provided to
enable client applications to set-aside sufficient memory for as
many DMA channels as required by the application.

• Be as portable as possible by providing a consistent interface across
all processor families and variants. Additionally, the DMA Man-
ager uses an unambiguous naming convention to safeguard against
conflicts with other software libraries provided by Analog Devices,
Inc. or elsewhere.

To this end, all enumeration values and typedefs use the ADI_DMA_
prefix, while functions and global variables use the lower case, adi_
dma_, equivalent.

Theory of Operation
This section describes the internal operation of the DMA Manager.

Device Drivers and System Services Manual for Blackfin Processors 6-3

DMA Manager

Overview
The DMA Manager is used to control the Blackfin DMA controller. The
DMA Manager supports both peripheral DMA for moving data to and
from the various on-board peripherals, and memory DMA for moving
data between the various memory spaces of the Blackfin processor.

The DMA Manager is capable of controlling any number of DMA chan-
nels. The user can specify which channels the DMA Manager should
control. Remaining channels not under control of the DMA Manager can
be used for any purpose and can be controlled independently of the DMA
Manager by the application.

Various data transfer modes of the Blackfin DMA controller are supported
including descriptor chains, circular buffers (utilizing the autobuffer capa-
bility of the Blackfin processor), and one-shot transfers. Both
one-dimensional or linear transfers are supported as are two-dimensional
or matrix transfers.

The DMA Manager can be directed to notify the client, via the client’s
callback function, when data transfers complete. Additionally the client’s
callback function is invoked when unexpected events, such as DMA
errors, occur. As with all system services, the DMA Manager allows the
client to specify callbacks to be “live”, meaning the client’s callback func-
tion is invoked at hardware interrupt time, or “deferred”, meaning the
client’s callback function is invoked outside the context of the hardware
interrupt.

Initialization
In order to use the DMA Manager, the client must first initialize it. The
DMA Manager does not use any static data, so the initialization step is
used to give the DMA Manager memory that it can use to manage the
DMA controller.

Theory of Operation

6-4 Device Drivers and System Services Manual for Blackfin Processors

The DMA Manager requires a small fixed amount of base memory and
then a variable amount of memory, depending on how many simulta-
neously open DMA channels the system requires. Note that memory
DMA requires two DMA channels—one channel for the source and
another channel for the destination for each memory DMA stream. Mac-
ros are provided to define the amount of memory (in bytes) that are
required for the base and channel memory. These macros are ADI_DMA_
BASE_MEMORY and ADI_DMA_CHANNEL_MEMORY. For instance, if the client
wanted to initialize the DMA Manager and would have at most four DMA
channels and one memory DMA stream open simultaneously, the amount
of memory that would be required is:

(ADI_DMA_BASE_MEMORY + (ADI_DMA_CHANNEL_MEMORY * 6)).

When called, the initialization function, adi_dma_Init(), initializes the
memory that was passed in. Like all functions within the DMA Manager,
the initialization function returns a return code that indicates success or
the specific error that occurred during the function call. All DMA API
functions return the ADI_DMA_RESULT_SUCCESS value to indicate success.
All error codes are of the form ADI_DMA_RESULT_XXXX.

In addition to the return code, the adi_dma_Init() function returns a
count of the number of channels it can manage simultaneously, and a han-
dle into the DMA Manager. The channel count can be tested to ensure
the DMA Manager can control the requested number of channels. The
DMA Manager handle value that is returned is later passed into the adi_
dma_Open and adi_dma_MemoryOpen functions. These functions use the
manager handle to identify the DMA Manager that is to control the chan-
nel. Passing in this handle allows these functions to quickly identify the
memory that will be used to manage the channel(s) being opened. After
the DMA Manager has been initialized, DMA channels and memory
streams can be opened for use.

While it is possible to create multiple DMA Managers in a unicore Black-
fin system, there is no practical advantage in doing so.

Device Drivers and System Services Manual for Blackfin Processors 6-5

DMA Manager

Termination
When the DMA Manager is no longer needed, the client can terminate
the DMA Manager with the adi_dma_Terminate function. This function
is passed the DMA Manager handle given to the client in the adi_dma_
Init function. The DMA Manager closes any open channels and streams,
and then returns to the caller. After the return from the adi_dma_Termi-
nate() function, the memory that was supplied to the DMA Manager via
the adi_dma_Init() function can be reused by the client.

Note that in many embedded systems, the DMA Manager is never
terminated.

Memory DMA and Peripheral DMA
As described in the Blackfin Processor Hardware Reference, the Blackfin
DMA controller supports both peripheral DMA and memory DMA.
Regardless of if peripheral DMA or memory DMA is being used, the cli-
ent schedules DMA Manager activity on a block by block basis rather than
on a sample by sample basis. While a block of data can be defined to be a
single sample of data, this is seldom the case. Most often, data is blocked
in quantities relevant to the processing that is to be performed. The term
“buffer” is used throughout this document to represent the block of data.

Peripheral DMA is used to move blocks of data between on-chip peripher-
als and one of the memory spaces of the Blackfin processor, most
commonly within the context of a device driver. For example, an on-chip
peripheral such as a PPI uses DMA to move blocks of data into or out
from the PPI device. As such, the device driver for the PPI typically uses
the DMA Manager to control dataflow through the PPI.

Memory DMA describes the movement of data between any of the various
Blackfin memory spaces. For example, due to the huge amounts of data
used for video processing, video frames may be stored in external

Theory of Operation

6-6 Device Drivers and System Services Manual for Blackfin Processors

SDRAM, and then DMA-ed piecemeal into internal L1 memory for
processing.

The DMA Manager fully supports both peripheral DMA and memory
DMA. When using peripheral DMA, clients leverage the capabilities of
the DMA Manager on a channel by channel basis. When using memory
DMA, clients can choose to control memory streams as individual source
and destination channels using the same techniques and functions pro-
vided for peripheral DMA, or alternatively can control memory DMA as a
single memory stream using the higher level adi_dma_MemoryXXXX()
functions.

Controlling Memory Streams
When memory DMA is needed, controlling and scheduling memory
DMA is most easily accomplished using higher level memory streams. The
adi_dma_MemoryXXXX() functions provide a simple, efficient method to
cause the Blackfin DMA controller to transfer data between the various
memory spaces.

The overall sequence for using memory streams is to first open the mem-
ory stream, schedule transfers as needed, then close the memory stream
when it is no longer needed. In many embedded systems, the memory
stream is never closed, but remains open at all times.

Opening Memory Streams

To open the memory stream, the client calls the adi_dma_MemoryOpen
function. The client passes the following parameters into the function:

• A handle to the DMA Manager that is to control the stream.

• The stream ID (of type ADI_DMA_STREAM_ID) that identifies which
memory DMA stream to use.

Device Drivers and System Services Manual for Blackfin Processors 6-7

DMA Manager

• A client handle that is passed back to the client’s callback function.
This is a client supplied value, supposedly of some meaning to the
client, which is passed back to the client’s callback function so that
the client can associate this value with the stream that is causing
the callback.

• A pointer to a location into which the DMA Manager stores the
stream handle. The stream handle is a DMA Manager defined
value that uniquely identifies the stream to the DMA Manager.

• A handle to a deferred callback service (typically from the Deferred
Callback Service) or a NULL value. If a NULL value is supplied,
the DMA Manager will make “live” callbacks to the application.
“Live” callbacks are made during hardware interrupt time. If a
deferred callback service handle is provided, all callbacks for the
stream use the deferred callback service to defer callback processing
until after hardware interrupt time.

Memory Transfers

Once a memory stream has been opened, the client can submit jobs to the
stream using the adi_dma_MemoryCopy and/or adi_dma_MemoryCopy2D
functions. Linear, one-dimensional, memory transfers use the former
function, two-dimensional transfers use the latter function. The same
stream can be used for both one-dimensional and two-dimensional trans-
fers, so a client can schedule a one-dimensional transfer on a given stream,
then schedule a two-dimensional transfer on that same stream.

Note that a memory stream can support only one transfer at a time. If a
transfer is in progress and another transfer is requested, these functions
return an error code indicating the stream is in use. If queuing of memory
transfers is required, this can be accomplished by using the channel-based
method of controlling DMA.

Theory of Operation

6-8 Device Drivers and System Services Manual for Blackfin Processors

One-Dimensional Transfers (Linear Transfers)

One-dimensional linear transfers are handled by calling the adi_dma_Mem-
oryCopy() function. When calling the adi_dma_MemoryCopy() function,
the client provides the following parameters:

• The stream handle. This is the value that was provided to the client
during the adi_dma_MemoryOpen() function.

• The destination starting address into which the data is copied.

• The source starting address from which data is copied.

• The width of each element, in bytes, that is to be copied. The
DMA Manager uses this value to schedule 8-, 16- or 32-bit
transfers.

• A count of the number of elements to be copied.

• The address of the callback function that is called when the transfer
is complete. When the callback function is actually invoked
depends on the callback service handle value that was supplied to
the stream when it was opened, either deferred or “live”. If the adi_
dma_MemoryCopy() function is passed a NULL value for the call-
back function address, the transfer occurs synchronously and the
adi_dma_MemoryCopy() function does not return to the client until
the transfer is complete. No callbacks are made in this case.

Device Drivers and System Services Manual for Blackfin Processors 6-9

DMA Manager

Two-Dimensional Transfers

Two-dimensional transfers are handled by calling the adi_dma_
MemoryCopy2D() function. When calling the adi_dma_MemoryCopy2D()
function, the client provides the following parameters:

• The stream handle. This is the value that was provided to the client
during the adi_dma_MemoryOpen() function.

• A pointer to a data structure (of type ADI_DMA_2D_TRANSFER) that
defines how data will be stored into the destination memory.

• A pointer to a data structure (of type ADI_DMA_2D_TRANSFER) that
defines how data will be read from the source memory.

• The width of each element, in bytes, that is to be copied. The
DMA Manager uses this value to schedule 8-, 16- or 32-bit
transfers.

• The address of the callback function that is called when the transfer
is complete. When the callback function is actually invoked
depends on the callback service handle value that was supplied to
the stream when it was opened (either deferred or “live”. If the
adi_dma_MemoryCopy() function is passed a NULL value for the
callback function address, the transfer will occur synchronously
and the adi_dma_MemoryCopy() function does not return to the cli-
ent until the transfer is complete. No callbacks are made in this
case.

The ADI_DMA_2D_TRANSFER data type is a structure that defines the neces-
sary values to describe a two-dimensional transfer. This data type contains
the starting address in memory, an XCount value defining the number of
columns, a YCount value defining the number of rows, and XModify and
YModify values describing the stride for each.

Theory of Operation

6-10 Device Drivers and System Services Manual for Blackfin Processors

Closing Memory Streams

When a memory stream is no longer needed, the adi_dma_MemoryClose
function is called to close the stream. Once closed, a stream must be
reopened before it can perform additional transfers. The client passes the
following parameters into the function:

• The stream handle. This is the value that was provided to the client
during the adi_dma_MemoryOpen function.

• A flag indicating whether or not the DMA Manager should wait
for any ongoing transfers on the stream to complete before closing
the channel.

Controlling DMA Channels
Controlling DMA on a channel by channel basis allows for the tightest
control of DMA scheduling. Before a channel can be used, it must first be
opened.

Opening DMA Channels

To open a DMA channel, the client calls the adi_dma_Open() function.
The client passes into the function the following parameters:

• A handle to the DMA Manager that is to control the channel.

• The channel ID (of type ADI_DMA_CHANNEL_ID) that identifies the
DMA channel to be opened.

• A client handle that is passed back to the client’s callback function.
This is a client supplied value, supposedly of some meaning to the
client, which is passed back to the client’s callback function so that
the client can associate this value with the stream that is causing
the callback.

Device Drivers and System Services Manual for Blackfin Processors 6-11

DMA Manager

• A pointer to a location into which the DMA Manager stores the
channel handle. The channel handle is a DMA Manager defined
value that uniquely identifies the channel to the DMA Manager.

• The operating mode that defines how the channel will move data.
See the section “Operating Modes” on page 6-11.

• A handle to a deferred callback service (typically from the Deferred
Callback Service) or a NULL value. If a NULL value is supplied,
the DMA Manager will make “live” callbacks to the application.
“Live” callbacks are made during hardware interrupt time. If a
deferred callback service handle is provided, all callbacks for the
stream will use the deferred callback service to make callbacks
occur at non-hardware interrupt time.

• The address of the callback function that is called to notify the cli-
ent of events. Events may be expected events, such as requests for
notification when a transfer is complete, to unexpected events such
as a DMA error. When the callback function is actually invoked,
deferred or “live”, depends on the callback service handle value that
is supplied.

After the channel has been successfully opened, the channel can be addi-
tionally configured, buffers supplied to the channel, and so on. Note that
the actual transferring of data does not begin with the adi_dma_Memory-
Open function. Dataflow must be specifically enabled via the adi_dma_
Control function.

Operating Modes

The DMA Manager supports the following operational modes of the
Blackfin DMA controller.

Single Transfers

The single transfer operating mode (ADI_DMA_MODE_SINGLE) is used to
transfer individual, single buffers of data. When using the single transfer

Theory of Operation

6-12 Device Drivers and System Services Manual for Blackfin Processors

mode, the client calls the adi_dma_Buffer() function to schedule a trans-
fer. The client passes to the function the following parameters:

• The channel handle. This is the value that was provided to the cli-
ent during the adi_dma_Open() function.

• The starting address of the buffer. This value is the address in
memory where data will initially be read from, if the transfer is for
outbound data, or the address in memory where data will initially
be stored, if the transfer is for inbound data.

• The configuration word for the transfer. This is a 16-bit value that
represents the DMA Configuration register for the channel. The
DMA Manager include file provides macros that allow the client to
quickly and easily create a configuration word. The following fields
within the configuration word are the only ones for which values
must be provided:

WNR
(Transfer Direction)

ADI_DMA_WNR_READ Transfer is for outbound data

ADI_DMA_WNR_WRITE Transfer is for inbound data

WDSIZE
(Transfer Element Size)

ADI_DMA_WD_SIZE_8BIT Elements are 1 byte wide (8 bits)

ADI_DMA_WD_SIZE_16BIT Elements are 2 bytes wide (16 bits)

ADI_DMA_WD_SIZE_32BIT Elements are 4 bytes wide (32 bits)

DMA2D
(Dimension Select)

ADI_DMA_DMA2D_LINEAR One-dimensional (linear) transfer

ADI_DMA_DMA2D_2D Two-dimensional transfer

DI_SEL
(Data Interrupt Timing
Select) applies only when
DMA2D = 1

ADI_DMA_DI_SEL_OUTER_
LOOP

A callback is generated when the
entire transfer has completed (outer
loop).

ADI_DMA_DI_SEL_INNER_
LOOP

A callback is generated on each inner
loop completion.

Device Drivers and System Services Manual for Blackfin Processors 6-13

DMA Manager

• The XCount value. For one-dimensional transfers, this value defines
the number of elements to be transferred. For two-dimensional
transfers, this value defines the inner loop count (number of
columns).

• The XModify value. For one-dimensional transfers, this value
defines the address increment/decrement (stride) for each succes-
sive element. For two-dimensional transfers, this value defines the
inner loop address increment/decrement (stride) for each successive
element up to but not including the last element in each inner
loop. After the last element in each inner loop, the YModify value is
applied instead, except on the very last element of the transfer.

• The YCount value. This parameter is ignored for one-dimensional
transfers. For two-dimensional transfers, the value represents the
outer loop count (number of rows).

• The YModify value. This parameter is ignored for one-dimensional
transfers. For two-dimensional transfers, this value defines the
outer loop address increment/decrement (stride) that is applied
after each inner loop completion. This value is the offset between
the last element of one row and the first element of the next row.

Regardless of whether or not dataflow on the channel is enabled, the adi_
dma_Buffer() function returns immediately to the caller. If dataflow is
already enabled on the channel, the DMA Manager begins executing the
transfer, otherwise the transfer does not begin until the dataflow is
enabled via the adi_dma_Control() function. When using the single trans-
fer mode, the adi_dma_Buffer() function can be called at any time, as
long as a transfer on the channel is not already in progress.

DI_EN
(Data Interrupt Enable)

ADI_DMA_DI_EN_DISABLE No callback is generated.

ADI_DMA_DI_EN_ENABLE The DMA Manager generates a
callback to the client when the
transfer completes.

Theory of Operation

6-14 Device Drivers and System Services Manual for Blackfin Processors

Circular Transfers

The circular transfer mode (ADI_DMA_MODE_CIRCULAR) leverages the auto-
buffer capability of the DMA controller. Using the circular transfer mode,
the client provides the DMA Manager with a single contiguous buffer
comprising n sub buffers, as shown in Figure 6-1 on page 6-16. When
dataflow is enabled, the DMA Manager begins transferring data at the
start of the buffer, continuing on throughout the entire buffer, and then
automatically looping back to the top of the buffer again, and repeating
indefinitely. The client can optionally direct the DMA Manager to gener-
ate callbacks at the completion of each sub buffer, to generate callbacks at
the completion of the entire buffer, or not to generate callbacks.

When using the circular transfer mode, the client calls the adi_dma_
Buffer() function with the following parameters:

• The channel handle. This is the value that was provided to the cli-
ent during the adi_dma_Open() function.

• The starting address of the buffer. This value is the address in
memory where data will initially be read from, if the transfer is for
outbound data, or the address in memory where data will initially
be stored, if the transfer is for inbound data.

• The configuration word for the transfer. This is a 16-bit value that
represents the DMA Configuration register for the channel. The
DMA Manager include file provides macros that allow the client to

Device Drivers and System Services Manual for Blackfin Processors 6-15

DMA Manager

quickly and easily create a configuration word. The only fields
within the configuration word the client need provide values for
are:

• The XCount value. This parameter should be set to the number of
elements in a single sub buffer.

• The XModify value. The width, in bytes, of an element. Allowed
values are 1, 2 and 4 only.

• The YCount value. This parameter should be set to the number of
sub buffers contained within the whole buffer.

• The YModify value. This parameter is ignored.

When using the circular mode, the adi_dma_Buffer() function must be
called prior to enabling dataflow on the channel. If after enabling data-
flow, the client wants to change to a different circular buffer, the client
must first disable dataflow on the channel, then call the adi_dma_Buffer()
function with the new buffer data, then re-enable dataflow on the appro-
priate channel.

WNR
(Transfer Direction)

ADI_DMA_WNR_READ A transfer is for outbound data.

ADI_DMA_WNR_WRITE A transfer is for inbound data.

DI_SEL
(Data Interrupt Timing
Select)

ADI_DMA_DI_SEL_OUTER_
LOOP

A callback is generated on
completion of whole buffer only.

ADI_DMA_DI_SEL_INNER_
LOOP

A callback is generated on each inner
loop completion.

DI_EN
(Data Interrupt Enable)

ADI_DMA_DI_EN_DISABLE No callback will be generated.

ADI_DMA_DI_EN_ENABLE Callbacks are generated according the
setting of DI_SEL.

Theory of Operation

6-16 Device Drivers and System Services Manual for Blackfin Processors

Large Descriptor Chaining Model

The large descriptor chaining model (ADI_DMA_MODE_DESCRIPTOR_LARGE)
allows the client to create chains of descriptors, residing anywhere in
memory, where each descriptor describes a specific work unit.

Using the large descriptor chaining mode, the client provides the DMA
Manager with one or more descriptor chains, as shown in Figure 6-2.
Descriptors can be submitted at any time, regardless of the dataflow state.
The DMA Manager maintains independent queues of descriptors for each
channel, keeping the DMA controller busy with transfers until all queued
descriptors have been processed. Both one-dimensional transfers and
two-dimensional transfers can be intermixed on the same channel. Each
transfer can define a different transfer type, length, and so on. Addition-
ally, callbacks to the client’s callback function, can be made upon
completion of every descriptor, any individual descriptor or configured to
never callback.

Figure 6-1. Circular Buffer

. . .

SUBBUFFER 0

SUBBUFFER 1

SUBBUFFER N

CALLBACK ON SUBBUFFER COMPLETE

CALLBACK ON ENTIRE BUFFER COMPLETE

ONE
CONTIGUOUS

BUFFER

Device Drivers and System Services Manual for Blackfin Processors 6-17

DMA Manager

When the large descriptor chaining mode is used, descriptor chains are
submitted to the channel using the adi_dma_Queue() function with the
following parameters:

• The channel handle. This is the value that was provided to the cli-
ent during the adi_dma_Open() function.

• A handle, of the type ADI_DMA_DESCRIPTOR_HANDLE, to a descriptor.
As the same adi_dma_Queue() function is used for all descriptor
based operating modes, including large descriptors, small descrip-
tors and arrays of descriptors, the ADI_DMA_DESCRIPTOR_HANDLE data
type acts as a container that conveniently represents each of the
descriptor types.

For the large descriptor chaining mode, descriptors are of the type ADI_
DMA_DESCRIPTOR_LARGE, a data type that defines a large model descriptor.
When calling the adi_dma_Queue() function, the client can either pass in
the address of the descriptor union (ADI_DMA_DESCRIPTOR_UNION) or alter-
natively, the address of the descriptor itself (ADI_DMA_DESCRIPTOR_LARGE)
to the ADI_DMA_DESCRIPTOR_HANDLE data type. This descriptor can be
either a single descriptor or the first descriptor in a chain of descriptors.

Large model descriptors contain all the information necessary for the
DMA Manager to control the operation of the DMA controller. This
information includes:

• A pointer to the next large descriptor in the chain. If this field is
NULL, then the given descriptor is the only descriptor the client is
submitting to the channel.

• The starting address of the buffer. This value is the address in
memory where data will initially be read from, if the transfer is for
outbound data, or the address in memory where data will initially
be stored, if the transfer is for inbound data.

Theory of Operation

6-18 Device Drivers and System Services Manual for Blackfin Processors

• The configuration word for the transfer. This is a 16-bit value that
represents the DMA Configuration register for the channel. The
DMA Manager include file provides macros that allow the client to
quickly and easily create a configuration word. The only fields
within the configuration word the client need provide values for
are:

• The XCount value. For one-dimensional transfers, this value defines
the number of elements to be transferred. For two-dimensional
transfers, this value defines the inner loop count (number of
columns).

• The XModify value. For one-dimensional transfers, this value
defines the address increment/decrement (stride) for each succes-
sive element. For two-dimensional transfers, this value defines the
inner loop address increment/decrement (stride) for each successive
element up to but not including the last element in each inner
loop. After the last element in each inner loop, the YModify value is
applied instead, except on the very last element of the transfer.

WNR
(Transfer Direction)

ADI_DMA_WNR_READ Transfer is for outbound data.

ADI_DMA_WNR_WRITE Transfer is for inbound data.

WDSIZE
(Transfer Element Size)

ADI_DMA_WD_SIZE_
8BIT

Elements are 1 byte wide (8 bits).

ADI_DMA_WD_SIZE_16BIT Elements are 2 bytes wide (16 bits).

ADI_DMA_WD_SIZE_32BIT Elements are 4 bytes wide (32 bits).

DMA2D
(Dimension Select)

ADI_DMA_DMA2D_LINEAR One-dimensional (linear) transfer

ADI_DMA_DMA2D_2D Two-dimensional transfer

DI_EN
(Data Interrupt Enable)

ADI_DMA_DI_EN_DISABLE No callback will be generated.

ADI_DMA_DI_EN_ENABLE The DMA Manager generates a
callback to the client when the
transfer completes.

Device Drivers and System Services Manual for Blackfin Processors 6-19

DMA Manager

• The YCount value. This parameter is ignored for one-dimensional
transfers. For two-dimensional transfers, the value represents the
outer loop count (number of rows).

• The YModify value. This parameter is ignored for one-dimensional
transfers. For two-dimensional transfers, this value defines the
outer loop address increment/decrement (stride) that is applied
after each inner loop completion. This value is the offset between
the last element of one row and the first element of the next row.

Although the DMA Manager does not constrain when descriptors can be
provided to a channel, for DMA channels that will be processing inbound
data it is best practice to provide descriptors to the channel via the adi_
dma_Queue() function before enabling dataflow. By doing this, the DMA
controller uses a space where data can be stored. If dataflow is enabled on
an inbound channel prior to providing descriptors, it is possible for data
to be received by the DMA channel but not have anywhere to store it.

Small Descriptor Chaining Model

The small descriptor chaining model (ADI_DMA_MODE_DESCRIPTOR_SMALL)
is similar to the large descriptor chaining model. The only material differ-
ence between the two models is that in the small descriptor model, the
pointer to the next descriptor in a chain of descriptors consists of only the
lower 16 bits of address, rather than a full 32-bit address. This means that

Figure 6-2. Descriptor Chain

. . .DESCRIPTOR
0

DESCRIPTOR
1

DESCRIPTOR
N

Theory of Operation

6-20 Device Drivers and System Services Manual for Blackfin Processors

all descriptors on a channel that is using the small descriptor model must
have the same upper 16 bits of address. In other words, all small model
descriptors for a channel must be located within the same 64KB segment.

This difference is encapsulated in the ADI_DMA_DESCRIPTOR_SMALL data
type. In order to avoid data alignment issues, a consequence of having the
next descriptor pointer exist as a 16-bit entry rather than a 32-bit entry,
the starting address of the data within the descriptor is declared as two
16-bit entries, rather than a single 32-bit entry. Performing two 16-bit
accesses, rather than a single 32-bit access avoids any alignment
exceptions.

Other than these differences, the small descriptor chaining model is func-
tionally identical to the large descriptor chaining model.

Arrays of Descriptors

The descriptor array mode (ADI_DMA_MODE_DESCRIPTOR_ARRAY) is not yet
supported in the Device Manager.

Device Drivers and System Services Manual for Blackfin Processors 6-21

DMA Manager

Configuring a DMA Channel

Once a DMA channel has been opened, the client can detect and modify
the configuration of the channel via the adi_dma_Control function. The
complete list of configuration control commands are provided in
Table 6-2 on page 6-62. In most cases, the client passes the following
parameters to the adi_dma_Control() function:

• The channel handle. This is the value that was provided to the cli-
ent during the adi_dma_Open function.

• The command ID. This ADI_DMA_CMD data type identifies the con-
trollable item that is being configured.

• A command specific value. This semantics of this parameter are
defined by the command ID. For example, given a command ID of
ADI_DMA_CMD_SET_DATAFLOW, the command specific value is either
TRUE or FALSE, to enable or disable dataflow on the channel.
The command specific value is always cast to (void*).

Closing a DMA Channel

To close a DMA channel, the client calls the adi_dma_Close() function.
The client passes the following parameters into the function:

• The channel handle. This is the value that was provided to the cli-
ent during the adi_dma_Open() function.

• A flag indicating whether or not the DMA Manager should wait
for any DMA activity on the channel to complete before closing
the channel.

Once a channel has been closed, the channel must be reopened with the
adi_dma_Open() function before it can be used again.

Theory of Operation

6-22 Device Drivers and System Services Manual for Blackfin Processors

Transfer Completions
Client applications can use two different mechanisms to determine when
transfers complete. One method is by polling the channel, the other
method is through callbacks.

In addition to polling and callbacks, the memory stream functions offer a
synchronous capability. When used synchronously, the adi_dma_Memory-
Copy() and adi_dma_MemoryCopy2D() functions return to the client only
when the transfer is complete.

Polling

Clients can use the adi_dma_Control() function to interrogate a specific
channel to determine if a transfer is in progress by using the ADI_DMA_CMD_
GET_TRANSFER_STATUS command ID. When given this command, the
DMA Manager examines the status of the individual DMA channel. The
function provides a response of TRUE, if a transfer is in progress, and a
response of FALSE, if the no transfer is currently in progress.

Note that memory streams can also be interrogated for transfer status.
Instead of passing the channel handle (ADI_DMA_CHANNEL_HANDLE) parame-
ter to the adi_dma_Control() function, the client should pass the stream
handle (ADI_DMA_STREAM_HANDLE) parameter (casted to the ADI_DMA_
CHANNEL_HANDLE data type) to the adi_dma_Control() function.

Callbacks

Callbacks are the more commonly used mechanism for clients to deter-
mine when transfers have completed. Callbacks are either “live”, meaning
they are made at interrupt time, or deferred, meaning they are made after
the hardware interrupt has completed processing using a callback service.

Device Drivers and System Services Manual for Blackfin Processors 6-23

DMA Manager

Memory Stream Callbacks

When using memory streams, if the client provided a callback function as
a parameter to the adi_dma_MemoryCopy() or adi_dma_MemoryCopy2D()
functions, the callback function is invoked by the DMA Manager when
the transfer is complete.

When using memory streams, the following arguments are passed to client
callback functions:

• The client handle. This is the client supplied value that was pro-
vided in the adi_dma_MemoryOpen() function.

• Event ID. This value is ADI_DMA_EVENT_DESCRIPTOR_PROCESSED.

• Starting destination address of the transfer.

Circular Transfer Callbacks

When using the circular transfer method (ADI_DMA_MODE_CIRCULAR), the
client uses the configuration word to specify the frequency of callbacks.
When directed to callback the client on each sub buffer completion, the
DMA Manager invokes the client’s callback function after each sub buffer
completes. For example, this is useful in double-buffering schemes, where
two sub buffers (ping/pong) are used.

When using circular transfers, the following arguments are passed to client
callback functions:

• The client handle. This is the client supplied value that was pro-
vided in the adi_dma_Open() function.

• Event ID. This value is either the ADI_DMA_EVENT_INNER_LOOP_PRO-
CESSED when a sub buffer has completed processing or the ADI_
DMA_EVENT_OUTER_LOOP_PROCESSED when the entire buffer has com-
pleted processing.

• Starting address of the data buffer.

Theory of Operation

6-24 Device Drivers and System Services Manual for Blackfin Processors

Descriptor Callbacks

When using any of the descriptor based transfer methods (ADI_DMA_MODE_
DESCRIPTOR_LARGE, ADI_DMA_MODE_DESCRIPTOR_SMALL or ADI_DMA_
DESCRIPTOR_ARRAY), the client uses the configuration word of the descrip-
tor to define whether or not a callback is to be generated following
processing of a descriptor. When directed to callback the client upon com-
pletion of the descriptor, the client callback function is passed the
following arguments:

• The client handle. This is the client supplied value that was pro-
vided in the adi_dma_Open() function.

• Event ID. This value is ADI_DMA_EVENT_DESCRIPTOR_PROCESSED.

• Starting address of the data.

Descriptor Based Submodes
When using the small or large model descriptor based transfers, two sub-
modes allow the client application greater flexibility in processing
descriptors. Each of these submodes can be used independently or in com-
bination. Each submode is enabled or disabled via the adi_dma_Control()
function. Clients who want to use these submodes must enable them prior
to enabling dataflow on the channel. Both submodes are disabled by
default.

Loopback Submode

The loopback submode is controlled by the ADI_DMA_CMD_SET_LOOPBACK
command.

When the loopback submode is enabled (after the DMA Manager has pro-
cessed the last descriptor in the chain of descriptors provided to a
channel), it automatically loops back to the first descriptor that was pro-
vided to the channel. This effectively creates an infinite loop of

Device Drivers and System Services Manual for Blackfin Processors 6-25

DMA Manager

descriptors, as illustrated in Figure 6-3. For example, with the loopback
submode, the client can provide the descriptors at initialization time, let
the DMA Manager process the descriptors, and never have to resupply the
DMA Manager with additional descriptors.

As in the non-loopback case, each descriptor, any one, none or all descrip-
tors can be tagged to generate a callback to the client after processing.

Streaming Submode

The streaming submode is controlled by the ADI_DMA_CMD_SET_STREAMING
command.

When not using the streaming submode, the DMA Manager pauses the
DMA controller after a descriptor that has been tagged to generate a call-
back has been processed. The DMA Manager does this because the
Blackfin DMA controller does not provide any status information indicat-
ing that a specific descriptor has been processed. If the DMA Manager did
not pause the controller, it is possible that before the DMA Manager can
recognize and process the callback interrupt for a given descriptor, the
DMA controller may have completed processing of yet another descriptor.
Unless the DMA controller pauses until the DMA Manager processes the
interrupt, the DMA Manager cannot definitively determine which call-
back interrupt is associated with which descriptor.

Figure 6-3. Descriptor Chain with Loopback

. . .DESCRIPTOR
0

DESCRIPTOR
1

DESCRIPTOR
N

Theory of Operation

6-26 Device Drivers and System Services Manual for Blackfin Processors

When not streaming, the DMA Manager also pauses the DMA controller
when a channel has exhausted its supply of descriptors.

The streaming submode allows the client to alter this behavior. When the
streaming submode is enabled, the DMA Manager never pauses the DMA
controller, allowing the DMA transfers to occur at the maximum through-
put rate. When streaming, the client is required to ensure the following
conditions:

• The channel always has descriptors to process and never runs out of
descriptors.

• The system timing is such that the DMA Manager can service the
callback interrupt for any descriptor tagged for a callback, before
another descriptor on the same channel that is tagged for callback
is processed.

These conditions can be fairly easily met in most systems.

DMA Channel to Peripheral Mapping
The Blackfin processor allows the user to change the default mapping of
the various DMA supported peripherals to the various DMA channels.
Note however, that the mappings for the Memory DMA channels are typ-
ically fixed and cannot be changed.

The DMA Manager provides two functions that allow the client to easily
detect and change the mapping of DMA channels to peripherals. These
functions can be called at any time after the DMA Manager has been ini-
tialized, but they must be processed before the channel is opened.

Device Drivers and System Services Manual for Blackfin Processors 6-27

DMA Manager

Sensing a Mapping

The client calls the adi_dma_GetMapping() function to detect the DMA
channel ID to which a peripheral is mapped. The adi_dma_GetMapping()
function takes the following parameters:

• The peripheral ID. This value, an ADI_DMA_PMAP type, enumerates
the peripheral whose mapping is being detected.

• Pointer to an ADI_DMA_CHANNEL_ID value. This value is the address
of a location in memory into which the function will store the
channel ID to which the given peripheral is mapped.

Setting a Mapping

The client calls the adi_dma_SetMapping() function to set the mapping of
a given channel ID to a given peripheral. The client should take care to
ensure that a one to one mapping exists between peripherals and channel
IDs. The adi_dma_SetMapping() function takes the following parameters:

• The peripheral ID. This value, an ADI_DMA_PMAP type, enumerates
the peripheral whose mapping is being set.

• The channel ID. This value, an ADI_DMA_CHANNEL_ID value, enu-
merates the DMA channel to which the given peripheral is to be
mapped.

Interrupts
The DMA Manager uses the services of the Interrupt Manager to config-
ure all DMA related interrupts. All hooking of interrupts is isolated into
the adi_dma_Open() and adi_dma_MemoryOpen() functions while all
unhooking of interrupts occurs in the adi_dma_Close() and adi_dma_Mem-
oryClose() functions.

Theory of Operation

6-28 Device Drivers and System Services Manual for Blackfin Processors

By default, the DMA Manager uses the Interrupt Vector Group (IVG) set-
tings as set up by the Interrupt Manager. The mapping of DMA channels
to IVG levels can be altered by the client via calls into the Interrupt Man-
ager. See “Interrupt Manager” on page 2-1 for more information on
altering mapping of DMA channels to IVGs.

Hooking Interrupts

When the client opens the first DMA channel is opened, the adi_dma_
Open() function hooks into the appropriate IVG chain for the DMA error
interrupt. The handler for DMA errors does nothing other than clear the
appropriate DMA error and notify the client’s callback function that a
DMA error occurred.

In addition to the DMA error interrupt, the adi_dma_Open() function
hooks the DMA data interrupt handler into the appropriate IVG level for
the given channel. The data interrupt handler is used to post callbacks
resulting from the completion of DMA transfers. In addition to posting
the notification callbacks, the data handler ensures the channel is
refreshed and restarted (if necessary) with any new pending transfers.

Unhooking Interrupts

When the last remaining open DMA channel is closed, the adi_dma_
Close() function unhooks the DMA error handler from the appropriate
IVG handler chain. In addition, if there are no other open channels that
are mapped to the same IVG as the channel being closed, the adi_dma_
Close() function unhooks the DMA data handler from the chain of han-
dlers for that IVG.

Device Drivers and System Services Manual for Blackfin Processors 6-29

DMA Manager

Two-Dimensional DMA
When using linear DMA, data is moved in a one-dimensional, linear fash-
ion. This is the most common type of transfer, where n elements of ‘w’
width are moved from one location, or taken in through a device, to
another memory location, or out through a device.

Two-dimensional DMA is a convenient feature that allows data to be
transferred in a non-linear fashion, which is especially useful in video type
applications. Two-dimensional DMA supports arbitrary row (YCount)
and column (XCount) sizes up to 64K x 64K elements, as well as row
modify values (YModify) and column modify values up to +/- 32K bytes.

When using channel DMA, descriptors are used to define the parameters
for the transfer. When using memory streams, the ADI_DMA_2D_TRANSFER
data type is used to define the parameters for the transfer.

Theory of Operation

6-30 Device Drivers and System Services Manual for Blackfin Processors

For example, suppose we want to retrieve a 16 x 8 block of bytes (data)
from a video frame buffer (frame) of size N x M pixels at location
frame[6][6] and store it in a separate memory area (data) to process. After
the data has been processed the values are then copied back to the original
location. Figure 6-4 illustrates the area of the frame to be processed.

To select each row of the 16 x 8 block, the inner loop of the required 2D
DMA configuration has 16 values (XCOUNT=16) and a stride (XMODIFY) of 1.
The outer loop comprises 8 values (YCOUNT=8) and a stride (YMODIFY) of
N-15 (A + B in Figure 6-4) chosen to instruct the DMA controller to
jump from the end of one row to the start of the next.

Figure 6-4. Selecting a 16 x 8 Block of Data from a Video Frame of
Size N x M

N6

6

M

16

8

B

A

frame

data

Device Drivers and System Services Manual for Blackfin Processors 6-31

DMA Manager

It would also be possible to extract interleaved data (for example, RGB
values for a video frame) by modifying both the x and y modify values. For
example to receive a stream of R,G,B,R,G,B,… values from an N x M
frame, consider Figure 6-5:

In this case the inner loop of the required 2D DMA configuration has 3
values (XCOUNT=3) and a stride (XMODIFY) of N*M chosen so that successive
elements in each row (or RGB tuple) are 1 - 2 - 3, 4 - 5 - 6, and so on. in
Figure 6-5. The outer loop of the 2D DMA configuration has N*M values
(YCOUNT=N*M) and a negative stride (YMODIFY) of 1-2*N*M chosen to
instruct the DMA controller to jump from element 3 to 4, 6 to 7, and so
on at the end of each inner loop.

Figure 6-5. Capturing a Video Data Stream of (R,G,B Pixels) x
(N x M image Size)

3 6

2 5

N

M

1 4

DMA Manager API Reference

6-32 Device Drivers and System Services Manual for Blackfin Processors

DMA Manager API Reference
This section provides descriptions of the DMA Manager API functions.

Notation Conventions
The reference pages for the API functions use the following format:

Name and purpose of the function

Description – Function specification

Prototype – Required header file and functional prototype

Arguments – Description of function arguments

Return Value – Description of function return values

The DMA Manager API supports the following functions.

Table 6-1. DMA Manager API Functions

Function Description

Primary Functions

adi_dma_Init Initializes a DMA Manager.
See “adi_dma_Init” on page 6-41.

adi_dma_Terminate Shuts down and terminates a DMA Manager.
See “adi_dma_Terminate” on page 6-53.

adi_dma_Open Opens a DMA channel for use.
See “adi_dma_Open” on page 6-49.

adi_dma_Close Closes a DMA channel.
See “adi_dma_Close” on page 6-39.

adi_dma_Control Controls/queries the operation of a DMA Channel.
See “adi_dma_Control” on page 6-36.

adi_dma_Queue Queues a descriptor chain.
See “adi_dma_Queue” on page 6-51.

Device Drivers and System Services Manual for Blackfin Processors 6-33

DMA Manager

adi_dma_Buffer Provides a single or circular buffer.
See “adi_dma_Buffer” on page 6-34.

Helper Functions

adi_dma_GetMapping Gets the DMA Channel ID to which a peripheral is
mapped. See “adi_dma_GetMapping” on page 6-40.

adi_dma_SetMapping Sets the DMA Channel ID to which a peripheral is
mapped. See “adi_dma_SetMapping” on page 6-52.

Memory DMA Functions

adi_dma_MemoryOpen Opens a memory DMA stream for use.
See “adi_dma_MemoryOpen” on page 6-47.

adi_dma_MemoryClose Closes a memory DMA stream.
See “adi_dma_MemoryClose” on page 6-42.

adi_dma_MemoryCopy Copies memory in a linear, one-dimensional fashion.
See “adi_dma_MemoryCopy” on page 6-43.

adi_dma_MemoryCopy2D Copies memory in a two-dimensional fashion.
See “adi_dma_MemoryCopy2D” on page 6-45.

Table 6-1. DMA Manager API Functions (Cont’d)

Function Description

DMA Manager API Reference

6-34 Device Drivers and System Services Manual for Blackfin Processors

adi_dma_Buffer

Description

This function assigns a one-shot or a circular buffer to a DMA channel
and configures the DMA Channel according to the parameters supplied.

Prototype

ADI_DMA_RESULT adi_dma_Buffer(

 ADI_DMA_CHANNEL_HANDLE ChannelHandle,

 void *StartAddress,

 ADI_DMA_CONFIG_REG Config,

 u16 XCount,

 S16 XModify,

 u16 YCount,

 S16 YModify

);

Arguments

ChannelHandle This argument uniquely identifies the DMA channel that the
buffer is to be assigned to and is the value returned when the
DMA channel was opened.

StartAddress This is the location of the start of the buffer to be either filled
or transmitted.

Config This is the DMA configuration control register for the
transfer.

XCount This is the total number of words to be transferred in a
one-dimensional buffer or the number of data elements per
row in a two-dimensional buffer.

XModify The offset in bytes between each word to be transferred (1-D)
or the offset in bytes between each row element (2-D).

Device Drivers and System Services Manual for Blackfin Processors 6-35

DMA Manager

Return Value

YCount This is the number of rows to be transferred.

YModify The offset in bytes between the last data element of one row
and the first element of the next.

ADI_DMA_RESULT_SUCCESS The buffer was assigned successfully.

ADI_DMA_RESULT_BAD_HANDLE The ChannelHandle does not contain a valid Channel
handle.

ADI_DMA_RESULT_BAD_MODE The DMA channel has not been opened for either single or
circular buffer operation.

ADI_DMA_RESULT_ALREADY_
RUNNING

A DMA operation is in progress.

DMA Manager API Reference

6-36 Device Drivers and System Services Manual for Blackfin Processors

adi_dma_Control

Description

The adi_dma_Control function controls/queries the operation of the spec-
ified DMA Channel.

The function can be used in several ways:

• A single command is passed.

adi_dma_Control(ChannelHandle, ADI_DMA_CMD_SET_LOOPBACK,

(void*) TRUE);

• A single command, value pair is passed; for example,

ADI_DMA_CMD_VALUE_PAIR cmd = {

 ADI_DMA_CMD_SET_WORD_SIZE, (void*) ADI_DMA_

WDSIZE_32BIT};

adi_dma_Control(ChannelHandle, cmd.CommandID ,cmd.Value);

• A single ADI_DMA_CMD_VALUE_PAIR structure is passed (by
reference):

adi_dma_Control(ChannelHandle,ADI_DMA_CMD_VALUE_

PAIR,&cmd);

• A table of ADI_COMMAND_PAIR structures is passed. The table must
have following terminator entry to signify the end of the table of
commands: { ADI_DMA_CMD_END, 0 }. For example,

ADI_DMA_CMD_VALUE_PAIR table = {

 {ADI_DMA_CMD_SET_LOOPBACK, (void*)LoopbackFlag},

 {ADI_DMA_CMD_SET_DATAFLOW, (void*)TRUE},

 { ADI_DMA_CMD_END, NULL };

adi_dma_Control(ChannelHandle,ADI_DMA_CMD_TABLE,&table);

Device Drivers and System Services Manual for Blackfin Processors 6-37

DMA Manager

The set of commands that can be issued using the adi_dma_Control func-
tion is defined in “DMA Commands” on page 6-62.

Prototype

ADI_DMA_RESULT adi_dma_Control(

 ADI_DMA_CHANNEL_HANDLE ChannelHandle,

 ADI_DMA_CM Command,

 void *Value

);

Arguments

ChannelHandle This argument uniquely identifies the DMA channel that the
buffer is to be assigned to and is the value returned when the
DMA channel was opened.

Command This is an ADI_DMA_CMD enumeration value (see “DMA Com-
mands” on page 6-62 for a full list of commands).

Value Depending on the value for Command, this parameter is one of
the following:

• If Command has the value ADI_DMA_CM_VALUE_PAIR,
the system issues the address of a single ADI_DMA_
CMD_VALUE_PAIR element specifying the
command.

• If Command has the value ADI_DMA_CMD_TABLE, the
system issues the address of an array of ADI_DMA_CMD_
VALUE_PAIR elements specifying one or more
commands. The last entry in the table must be {ADI_
DMA_CMD_END,NULL}.

• For any other value, Command specifies the command
to be processed and Value is the associated value for
the command. In the case of a command that queries a
value, the value of the setting is stored at the location
pointed to by the pointer Value.

DMA Manager API Reference

6-38 Device Drivers and System Services Manual for Blackfin Processors

Return Value

ADI_DMA_RESULT_SUCCESS This function completed successfully.

ADI_DMA_RESULT_BAD_COM-
MAND

The command is invalid. Either a bad command or a specific
command is not allowed in this context.

ADI_DMA_RESULT_ALREADY_
RUNNING

The commands could not be performed as the channel is
currently transferring data.

Device Drivers and System Services Manual for Blackfin Processors 6-39

DMA Manager

adi_dma_Close

Description

This function closes a channel and releases the configuration memory for
further use. Depending on the value of the WaitFlag argument, either the
channel is closed immediately or after ongoing transfers have completed.

Prototype

ADI_DMA_RESULT adi_dma_Close(
 ADI_DMA_CHANNEL_HANDLE ChannelHandle,
 u32 WaitFlag);

Arguments

Return Value

ChannelHandle This argument uniquely identifies the DMA channel to be
closed and is the value returned when the DMA channel was
opened.

WaitFlag If set to TRUE (1), the argument instructs the DMA
Manager to wait for ongoing transfers to complete before
closing the channel; otherwise, if set to FALSE (0), the
channel will be closed immediately terminating any
ongoing transfers.

ADI_DMA_RESULT_SUCCESS DMA Channel successfully closed.

ADI_DMA_RESULT_BAD_HANDLE ChannelHandle does not point to a valid channel.

ADI_DMA_RESULT_CANT_
UNHOOK_INTERRUPT

The data handler and/or error handler cannot be unhooked.

DMA Manager API Reference

6-40 Device Drivers and System Services Manual for Blackfin Processors

adi_dma_GetMapping

Description

This function is used to identify the DMA Channel ID to which a DMA
compatible peripheral is mapped.

Prototype

ADI_DMA_RESULT adi_dma_GetMapping(

 ADI_DMA_PMAP Peripheral,

 ADI_DMA_CHANNEL_ID *pChannelID

);

Arguments

Return Value

Peripheral The peripheral ID is being queried.

*pChannelID This is the location where the DMA Manager stores the chan-
nel ID to which the peripheral is a mapped.

ADI_DMA_RESULT_SUCCESS The device is identified and DMA information is returned.

ADI_DMA_RESULT_BAD_
PERIPHERAL

A bad peripheral value was encountered.

ADI_DMA_RESULT_NOT_MAPPED No mapping was found for the device.

Device Drivers and System Services Manual for Blackfin Processors 6-41

DMA Manager

adi_dma_Init

Description

This function initializes a DMA Manager.

Prototype

ADI_DMA_RESULT adi_dma_Init(
 void *pMemory,
 sizet MemorySize,
 u32 *pMaxChannels
 ADI_DMA_MANAGER_HANDLE *pManagerHandle,
 void *pCriticalRegionArg

);

Arguments

Return Value

This function returns ADI_DMA_RESULT_SUCCESS if successful. Any other
value indicates an error. Possible errors include:

*pMemory This is the pointer to memory that the DMA can use.

MemorySize This is the size, in bytes, of the memory provided.

*pMaxChannels This is the location in memory where the DMA Manager stores
the number of simultaneously open channels that can be sup-
ported given the memory provided.

*pManagerHandle This is the location in memory where the DMA Manager stores
the handle to the DMA Manager.

*pCriticalRegionArg This is the parameter that the DMA Manager passes to the
adi_int_EnterCriticalRegion() function.

ADI_DMA_RESULT_NOMEMORY Insufficient memory is available to initialize the DMA
Manager.

DMA Manager API Reference

6-42 Device Drivers and System Services Manual for Blackfin Processors

adi_dma_MemoryClose

Description

This function closes down a memory DMA stream, freeing up all
resources used by the memory stream.

Prototype

ADI_DMA_RESULT adi_dma_MemoryOpen(

 ADI_DMA_STREAM_HANDLE StreamHandle,

 u32 WaitFlag
) ;

Arguments

Return Value

The function returns ADI_DMA_RESULT_SUCCESS if successful. Any other
value indicates an error. Possible errors include:

StreamHandle This is the handle to the DMA memory stream

WaitFlag If set to TRUE (1), this argument instructs the DMA Man-
ager to wait for ongoing transfers to complete before closing
down the memory stream; otherwise, if set to FALSE (0),
the channel is closed immediately, terminating any transfers
in progress.

ADI_DMA_RESULT_BAD_HANDLE The StreamHandle parameter does not point to a valid
memory stream.

Device Drivers and System Services Manual for Blackfin Processors 6-43

DMA Manager

adi_dma_MemoryCopy

Description

This function performs a one-dimensional, linear memory copy.

Prototype

ADI_DMA_RESULT adi_dma_MemoryCopy(

 ADI_DMA_STREAM_HANDLE StreamHandle,

 void *pDest,

 void *pSrc,

 u16 ElementCount,

 u16 ElementWidth,

 ADI_DCB_CALLBACK_FN ClientCallback

) ;

Arguments

StreamHandle This is the handle to the DMA memory stream.

*pDest This is the starting address into which the memory will be
copied.

*pDest This is the starting address from which the memory will be
copied.

ElementCount This is the number of elements to transfer.

ElementWidth This is the width, in bytes, of an element. Allowed values
are 1, 2 and 4.

ClientCallback Callback function that is called when the transfer
completes. If NULL, the call to the adi_dma_Memory-
Copy() function is considered synchronous and does not
return to the client until the transfer has completed.

DMA Manager API Reference

6-44 Device Drivers and System Services Manual for Blackfin Processors

Return Value

The function returns ADI_DMA_RESULT_SUCCESS if successful. Any other
value indicates an error. Possible errors include:

ADI_DMA_RESULT_BAD_HANDLE The StreamHandle parameter does not point to a valid
memory stream.

ADI_DMA_RESULT_IN_USE The memory stream already has a transfer in progress.

Device Drivers and System Services Manual for Blackfin Processors 6-45

DMA Manager

adi_dma_MemoryCopy2D

Description

This function performs a two-dimensional memory copy.

Prototype

ADI_DMA_RESULT adi_dma_MemoryCopy2D(

 ADI_DMA_STREAM_HANDLE StreamHandle,

 ADI_DMA_2D_TRANSFER *pDest,

 ADI_DMA_2D_TRANSFER *pSrc,

 u32 ElementWidth,

 ADI_DCB_CALLBACK_FN ClientCallback

);

Arguments

StreamHandle This is the handle to the DMA memory stream.

*pDest This is the pointer to the structure that describes how and
where the data will be copied into memory.

*pDest This is the pointer to the structure that describes how and
where the data will be copied from memory.

ElementWidth This is the width, in bytes, of an element. Allowed values
are 1, 2 and 4.

ClientCallback This is the callback function that is called when the
transfer completes. If NULL, the call to the adi_dma_Mem-
oryCopy() function is considered synchronous and does
not return to the client until the transfer has
completed.

DMA Manager API Reference

6-46 Device Drivers and System Services Manual for Blackfin Processors

Return Value

The function returns ADI_DMA_RESULT_SUCCESS if successful. Any other
value indicates an error. Possible errors include:

ADI_DMA_RESULT_BAD_HANDLE The StreamHandle parameter does not point to a valid
memory stream.

ADI_DMA_RESULT_IN_USE The memory stream already has a transfer in progress.

Device Drivers and System Services Manual for Blackfin Processors 6-47

DMA Manager

adi_dma_MemoryOpen

Description

This function opens a memory DMA stream for use. Once it is opened,
memory DMA transfers can be scheduled on the stream.

Prototype

ADI_DMA_RESULT adi_dma_MemoryOpen(

 ADI_DMA_MANAGER_HANDLE ManagerHandle,

 ADI_DMA_STREAM_ID StreamID,

 void *ClientHandle,

 ADI_DMA_STREAM_HANDLE *pStreamHandle,

 ADI_DCB_HANDLE DCBServiceHandle

) ;

Arguments

ManagerHandle This is the handle to the DMA Manager.

StreamID This is the memory stream ID that is being opened.

*ClientHandle This is an identifier defined by the client. The DMA Man-
ager includes this identifier in all DMA Manager initiated
communication with the client, specifically in calls to the
callback function.

*pStreamHandle This is the pointer to a client provided location wither the
DMA Manager stores an identifier defined by the DMA
Manager. All subsequent communication initiated by the
client to the DMA Manager for this memory stream
includes this handle.

DCBServiceHandle This is the handle to the deferred callback service to be used
for any memory stream events. A value of NULL means that
deferred callbacks are not used and all callbacks occur at
DMA interrupt time.

DMA Manager API Reference

6-48 Device Drivers and System Services Manual for Blackfin Processors

Return Value

The function returns ADI_DMA_RESULT_SUCCESS if successful. Any other
value indicates an error. Possible errors include:

ADI_DMA_RESULT_ALL_IN_USE All channel memory is in use.

ADI_DMA_RESULT_CANT_HOOK_
INTERRUPT

The system cannot hook a DMA data or error interrupt.

Device Drivers and System Services Manual for Blackfin Processors 6-49

DMA Manager

adi_dma_Open

Description

The adi_dma_Open function opens a DMA channel for use. The DMA
Manager ensures the channel is not already opened and then initializes any
appropriate data structures.

Prototype

ADI_DMA_RESULT adi_dma_Open(

 ADI_DMA_CHANNEL_ID ChannelID

 ADI_DMA_MANAGER_HANDLE ManagerHandle

 void *ClientHandle,

 ADI_DMA_CHANNEL_HANDLE *pChannelHandle,

 ADI_DMA_MODE Mode,

 ADI_DCB_HANDLE DCBServiceHandle,

 ADI_DCB_CALLBACK_FN ClientCallback

);

DMA Manager API Reference

6-50 Device Drivers and System Services Manual for Blackfin Processors

Arguments

Return Value

The function returns ADI_DMA_RESULT_SUCCESS if the channel was success-
fully opened. Any other value indicates an error. Possible errors include:

ManagerHandle This is the handle to the DMA Manager.

ChannelID This is the ADI_DMA_CHANNEL_ID enumeration value (see
“ADI_DMA_CHANNEL_ID” on page 6-58).

*ClientHandle This is an identifier defined by the client. The DMA
Manager includes this identifier in all DMA Manager
 initiated communication with the client, specifically in calls
to the callback function.

*pChannelHandle This is the pointer to a client provided location where the
DMA Manager stores an identifier defined by the DMA
Manager. All subsequent communication initiated by the cli-
ent to the DMA Manager for this channel includes the han-
dle to specify the channel to which it is referring.

Mode This is the an ADI_DMA_MODE enumeration value
(on page 6-58) specifying the data transfer mode to be used
by the opened DMA channel.

DCBServiceHandle This is the handle to the deferred callback service to be used
for the given channel. A value of NULL means that deferred
callbacks are not used and all callbacks occur at DMA
interrupt time.

ClientCallback This is the address of a call-back function defined by the
application. The value passed for the ClientHandle param-
eter is the value supplied by the application when the chan-
nel was opened.

ADI_DMA_RESULT_ALL_IN_USE All channel memory is in use.

ADI_DMA_RESULT_CANT_HOOK_
INTERRUPT

The system cannot hook a DMA data or error interrupt.

Device Drivers and System Services Manual for Blackfin Processors 6-51

DMA Manager

adi_dma_Queue

Description

This function queues a descriptor, or chain of descriptors, to the specified
DMA channel.

When using descriptor chains, the descriptor is added to the end of the list
of descriptors already queued to the channel, if any. The last descriptor in
the chain must have its pNext pointer set to NULL.

Prototype

ADI_DMA_RESULT adi_dma_Queue(

 ADI_DMA_CHANNEL_HANDLE ChannelHandle,

 ADI_DMA_DESCRIPTOR_HANDLE DescriptorHandle

);

Arguments

Return Value

ChannelHandle This argument uniquely identifies the DMA channel that the
descriptor is to be queued on and is the value returned when
the DMA channel was opened.

DescriptorHandle This is a pointer to the first descriptor in the chain.

ADI_DMA_RESULT_SUCCESS The descriptor was queued successfully.

ADI_DMA_RESULT_BAD_HANDLE The ChannelHandle does not contain a valid channel
handle.

ADI_DMA_RESULT_BAD_
DESCRIPTOR

The descriptor handle is NULL.

ADI_DMA_RESULT_ALREADY_
RUNNING

This argument cannot submit additional descriptors to a
channel configured for a loopback with dataflow enabled.

DMA Manager API Reference

6-52 Device Drivers and System Services Manual for Blackfin Processors

adi_dma_SetMapping

Description

This function maps the DMA Channel ID to the given peripheral.

Prototype

ADI_DMA_RESULT adi_dma_SetMapping(

 ADI_DMA_PMAP Peripheral,

 ADI_DMA_CHANNEL_ID ChannelID

);

Arguments

Return Value

Peripheral This is the peripheral ID to which the DMA channel is to be
mapped.

ChannelID This is the channel ID that is to be mapped to the peripheral.

ADI_DMA_RESULT_SUCCESS The channel was successfully mapped.

ADI_DMA_RESULT_BAD_
PERIPHERAL

A bad peripheral value was encountered.

ADI_DMA_RESULT_ALREADY_
RUNNING

The mapping could not be performed as the channel is
currently transferring data.

Device Drivers and System Services Manual for Blackfin Processors 6-53

DMA Manager

adi_dma_Terminate

Description

This function closes down all DMA activity and terminates the DMA
Manager.

Prototype

ADI_DMA_RESULT adi_dma_Terminate(

 ADI_DMA_MANAGER_HANDLE ManagerHandle,

);

Arguments

Return Value

The function returns ADI_DMA_RESULT_SUCCESS if successful. Any other
value indicates an error.

Public Data Structures, Enumerations
and Macros

This section defines both the public data structures and enumerations
used by the DMA Manager. These data structures are made available to
client applications or device driver libraries via the header file, adi_dma.h.
All types have the ADI_DMA_ prefix to avoid ambiguity with client develop-
ers’ own data types.

ManagerHandle This is the handle to the DMA Manager.

Public Data Structures, Enumerations and Macros

6-54 Device Drivers and System Services Manual for Blackfin Processors

This section contains:

• “Data Types” on page 6-54

• “Data Structures” on page 6-55

• “General Enumerations” on page 6-57

• “ADI_DMA_CONFIG_REG Field Values” on page 6-61

• “DMA Commands” on page 6-62

Data Types
Several data types that shield the client developer from the internal imple-
mentation of the library and the details of DMA programming are used.
These data types also provide an interface that is partially decoupled from
the functionality offered by individual processors.

ADI_DMA_CHANNEL_HANDLE

The ADI_DMA_CHANNEL_HANDLE type identifies each separate DMA channel
to the DMA Manager. When passed to the DMA Manager function, it
uniquely identifies the channel function to which it needs to refer or upon
which it must operate. The DMA Manager returns this handle to the
application when a DMA channel is opened. All other DMA Manager
functions that need to identify a channel require this parameter to be
passed.

ADI_DMA_DESCRIPTOR_UNION / ADI_DMA_DESCRIPTOR_HAN-
DLE

The ADI_DMA_DESCRIPTOR_UNION data structure represents a union of the
small descriptor, large descriptor, and descriptor array data types. The
ADI_DMA_DESCRIPTOR_HANDLE is then a typedef that describes a pointer to
the union. The ADI_DMA_DESCRIPTOR_HANDLE is passed into the adi_dma_

Device Drivers and System Services Manual for Blackfin Processors 6-55

DMA Manager

Queue() function as a means to provide the function with either a) a small
descriptor chain, b) a large descriptor chain, or c) an array of descriptors.
By using the handle/union, only a single adi_dma_Queue() function is
needed, rather than separate functions for each of the descriptor data
types.

typedef union ADI_DMA_DESCRIPTOR_UNION {
 ADI_DMA_DESCRIPTOR_SMALL Small;
 ADI_DMA_DESCRIPTOR_LARGE Large;
 ADI_DMA_DESCRIPTOR_ARRAY Array;
} ADI_DMA_DESCRIPTOR_UNION;

typedef ADI_DMA_DESCRIPTOR_UNION *ADI_DMA_DESCRIPTOR_HANDLE;

ADI_DMA_STREAM_HANDLE

The ADI_DMA_STREAM_HANDLE type identifies a memory stream to the DMA
Manager. When passed to the adi_dma_MemoryXXX functions, the handle
uniquely identifies the memory stream onto which the DMA Manager is
to operate. The DMA Manager returns this handle to the application
when a DMA memory stream is opened. All other memory stream func-
tions require this parameter to be passed.

Data Structures
The structures that define each type of descriptor and the DMA Configu-
ration register are available in the public header file, adi_dma.h. The field
names follow the convention used in the hardware reference manual for
the appropriate processor.

Public Data Structures, Enumerations and Macros

6-56 Device Drivers and System Services Manual for Blackfin Processors

ADI_DMA_2D_TRANSFER

The ADI_DMA_2D_TRANSFER data structure defines the characteristics of
either the source or destination component of a two-dimensional memory
copy.

typedef struct ADI_DMA_2D_TRANSFER {

 void *StartAddress;

 u16 XCount;

 s16 XModify;

 u16 YCount;

 s16 YModify;

} ADI_DMA_2D_TRANSFER;

ADI_DMA_CONFIG_REG

The ADI_DMA_CONFIG_REG type defines the structure for the DMA Config-
uration Control Word. In addition, macros are provided to allow the
client to set individual fields within the word.

ADI_DMA_DESCRIPTOR_ARRAY

The ADI_DMA_DESCRIPTOR_ARRAY structure defines the contents of a
descriptor array element:

typedef struct ADI_DMA_DESCRIPTOR_ARRAY {

 void *StartAddress;

 ADI_DMA_CONFIG_REG Config;

 u16 XCount;

 s16 XModify;

 u16 YCount;

 s16 YModify;

} ADI_DMA_DESCRIPTOR_ARRAY;

Device Drivers and System Services Manual for Blackfin Processors 6-57

DMA Manager

ADI_DMA_DESCRIPTOR_LARGE

The ADI_DMA_DESCRIPTOR_LARGE structure defines the contents of a large
descriptor.

typedef struct ADI_DMA_DESCRIPTOR_LARGE {

 struct ADI_DMA_DESCRIPTOR_LARGE *pNext;

 void *StartAddress;

 ADI_DMA_CONFIG_REG Config;

 u16 XCount;

 s16 XModify;

 u16 YCount;

 s16 YModify;

} ADI_DMA_DESCRIPTOR_LARGE;

ADI_DMA_DESCRIPTOR_SMALL

The ADI_DMA_DESCRIPTOR_SMALL structure defines the contents of a small
descriptor:

typedef struct ADI_DMA_DESCRIPTOR_SMALL {

 u16 *pNext;

 u16 StartAddressLow;

 u16 StartAddressHigh;

 ADI_DMA_CONFIG_REG Config;

 u16 XCount;

 s16 XModify;

 u16 YCount;

 s16 YModify;

} ADI_DMA_DESCRIPTOR_SMALL;

General Enumerations
The enumerations control and provide feedback for the operation of the
DMA Manager.

Public Data Structures, Enumerations and Macros

6-58 Device Drivers and System Services Manual for Blackfin Processors

ADI_DMA_CHANNEL_ID

The ADI_DMA_CHANNEL_ID enumeration contains values for each and every
DMA channel of the processor. This value is used in the adi_dma_Open()
function to identify which channel is to be opened. The specific enumera-
tion values are dependent on the specific processor being targeted.

ADI_DMA_EVENT

The ADI_DMA_EVENT enumeration describes the types of events that can be
reported to the client’s callback function. Associated with the ADI_DMA_
EVENT parameter is another parameter that points to the companion argu-
ment, pArg, for the event.

ADI_DMA_MODE

The ADI_DMA_MODE enumeration defines how a channel is to process the
data to be transferred. It takes the following values:

Value Event Companion Argument

ADI_DMA_EVENT_DESCRIPTOR_
PROCESSED

A descriptor has completed
processing or a memory stream
has completed a memory copy
operation.

The address of the descriptor
just processed, or NULL if the
event is a memory stream
completion event.

ADI_DMA_EVENT_INNER_LOOP_
PROCESSED

A sub buffer has completed
processing. The start address of the

circular buffer.ADI_DMA_EVENT_OUTER_LOOP_
PROCESSED

The entire circular buffer has
completed processing.

ADI_DMA_EVENT_ERROR_
INTERRUPT

DMA error interrupt has been
generated.

NULL

ADI_DMA_DATA_MODE_UNDEFINED Undefined

ADI_DMA_DATA_MODE_SINGLE This is a single one-shot buffer.

ADI_DMA_DATA_MODE_CIRCULAR This is a single circular buffer.

ADI_DMA_DATA_MODE_DESCRIPTOR_ARRAY This is an array of descriptors.

Device Drivers and System Services Manual for Blackfin Processors 6-59

DMA Manager

ADI_DMA_PMAP

The ADI_DMA_PMAP enumeration defines each of the DMA supported
on-chip peripherals of the processor. This value is used to detect and set
the mappings of on-chip peripherals to DMA channels using the adi_dma_
GetMapping() and adi_dma_SetMapping() functions. The specific enumer-
ation values are dependent on the specific processor being targeted.

ADI_DMA_RESULT

All public DMA Manager functions return a result code of the enumera-
tion type, ADI_DMA_RESULT. Possible values are:

ADI_DMA_STREAM_ID

The ADI_DMA_STREAM_ID enumeration contains values for every DMA
channel of the processor. This value is used in the adi_dma_Open() func-

ADI_DMA_DATA_MODE_DESCRIPTOR_SMALL This is a chain of small descriptors.

ADI_DMA_DATA_MODE_DESCRIPTOR_LARGE This is a chain of large descriptors.

ADI_DMA_RESULT_SUCCESS Generic success is reported.

ADI_DMA_RESULT_FAIL Generic failure is reported.

ADI_DMA_RESULT_BAD_DEVICE A bad device information was received.

ADI_DMA_RESULT_BAD_HANDLE A bad device handle was encountered.

ADI_DMA_RESULT_BAD_DESCRIPTOR A bad descriptor was encountered.

ADI_DMA_RESULT_BAD_MODE A bad channel mode was encountered.

ADI_DMA_RESULT_IN_USE Channel is already in use.

ADI_DMA_RESULT_ALREADY_RUNNING DMA is already running.

ADI_DMA_RESULT_NO_BUFFER Channel has no buffer.

ADI_DMA_RESULT_BAD_COMMAND Invalid Config item was received.

ADI_DMA_RESULT_NO_MEMORY A memory to channel object cannot be assign.

Public Data Structures, Enumerations and Macros

6-60 Device Drivers and System Services Manual for Blackfin Processors

tion to identify which channel is to be opened. The specific enumeration
values are dependent on the specific processor being targeted.

Device Drivers and System Services Manual for Blackfin Processors 6-61

DMA Manager

ADI_DMA_CONFIG_REG Field Values
These values are to be used to set the relevant bits in the DMA Configura-
tion word.

ADI_DMA_DMA2D

ADI_DMA_DI_EN

ADI_DMA_DI_SEL

ADI_DMA_EN

ADI_DMA_WDSIZE

ADI_DMA_LINEAR Linear buffer

ADI_DMA_2D 2D DMA operation

ADI_DMA_DI_EN_DISABLE Disable callbacks on completion.

ADI_DMA_DI_EN_ENABLE Enable callbacks on completion.

ADI_DMA_DI_SEL_OUTER_LOOP Callback after completing whole buffer (default).

ADI_DMA_DI_SEL_INNER_LOOP Callback after completing each inner loop.

ADI_DMA_DISABLE Disable DMA transfer on the channel.

ADI_DMA_ENABLE Enable DMA transfer on the channel.

ADI_DMA_8BIT 8-bit words

ADI_DMA_16BIT 16-bit words

ADI_DMA_32BIT 32-bit words

Public Data Structures, Enumerations and Macros

6-62 Device Drivers and System Services Manual for Blackfin Processors

ADI_DMA_WNR

DMA Commands
DMA channels and memory streams can be controlled via calls to the adi_
dma_Command() function. Table 6-2 describes the commands and values
that can be issued via the function:

ADI_DMA_READ Transfer from memory to peripheral.

ADI_DMA_WRITE Transfer from peripheral to memory.

Table 6-2. DMA Commands

Command ID Value Description

ADI_DMA_CMD_TABLE ADI_DMA_CMD_VALUE_PAIR * Pointer to a table of
commands

ADI_DMA_CMD_PAIR ADI_DMA_CMD_VALUE_PAIR * Pointer to a single
command pair

ADI_DMA_CMD_END NULL Signifies end of table

ADI_DMA_CMD_SET_LOOPBACK TRUE/FALSE Enables/disables loopback

ADI_DMA_CMD_SET_
STREAMING

TRUE/FALSE Enables/disables streaming

ADI_DMA_CMD_SET_DATAFLOW TRUE/FALSE Enables/disables dataflow

ADI_DMA_CMD_FLUSH n/a Flushes all buffers and
descriptors on a channel

ADI_DMA_CMD_GET_
TRANSFER_STATUS

u32 * Provides the transfer status,
TRUE - in progress, FALSE -
not in progress

ADI_DMA_CMD_TC_SET_DCB u16 Sets the traffic control DCB
value

ADI_DMA_CMD_TC_SET_DEB u16 Sets the traffic control DEB
value

Device Drivers and System Services Manual for Blackfin Processors 6-63

DMA Manager

ADI_DMA_CMD_TC_SET_DAB u16 Sets the traffic control DAB
value

ADI_DMA_CMD_TC_SET_MDMA u16 Sets the traffic control
MDMA value

ADI_DMA_CMD_TC_GET_DCB_
COUNTER

u16* Gets the traffic control DCB
counter value

ADI_DMA_CMD_TC_GET_DEB_
COUNTER

u16* Gets the traffic control DEB
counter value

ADI_DMA_CMD_TC_GET_DAB_
COUNTER

u16* Gets the traffic control DAB
counter value

ADI_DMA_CMD_TC_GET_MDMA_
COUNTER

u16* Gets the traffic control
MDMA counter value

Table 6-2. DMA Commands (Cont’d)

Command ID Value Description

Public Data Structures, Enumerations and Macros

6-64 Device Drivers and System Services Manual for Blackfin Processors

Device Drivers and System Services Manual for Blackfin Processors 7-1

7 DEVICE DRIVER MANAGER

This chapter describes the Analog Devices, Inc. Device Driver Model.

The device driver model is used to control devices, both internal and
external, to ADI processors. This includes on-board peripherals, such as
SPORTs and Parallel Peripheral Interface (PPI), and off-chip connected
devices such as codecs and converters.

This chapter contains:

• “Device Driver Model Overview” on page 7-3
provides a general overview of the functionality provided by the
device driver model and a brief description of the overall device
driver architecture.

• “Using the Device Manager” on page 7-5
describes how applications should invoke and interact with the
device driver model including an explanation of the different data-
flow methods that are supported in the model.

• “Device Manager Design” on page 7-18
describes the Device Driver Manager API and inner workings of
the Device Driver Manager. Specifically, this section describes how
the Device Driver Manager operates and what it does in response
to API calls and interaction with physical drivers.

• “Physical Driver Design” on page 7-35
explains how physical drivers can be written to comply with the
model and describes how physical device drivers interact with the
Device Driver Manager.

7-2 Device Drivers and System Services Manual for Blackfin Processors

• “Device Manager API Reference” on page 7-47
describes the API functions of the Device Driver Manager.

• “Physical Driver API Reference” on page 7-57
describes the API used between the Device Driver Manager and
each physical driver.

• “Examples” on page 7-64
provides PPI Driver and UART Driver code examples.

The interface from the application to the device driver provides a consis-
tent, simple and familiar API to most programmers. While there is always
some level of overhead involved in any standardization type effort, the
benefits of a unified model far outweigh any minor inefficiencies. The
model makes it relatively simple to create a new device driver, allows
applications to largely insulate themselves from any device driver specifics
and allows the device drivers to maximize use of any hardware features.

It is not expected that this model will be universally acceptable. There will
always be devices that do not fit into the model, or applications that want
to work with a device in some unique manner, and so on. The objective of
this model is to provide a simple, efficient framework that will work for
the majority of applications.

All sources to the device driver model are included in the various distribu-
tions of the model. While it is not expected that the sources will need to
be modified or tailored to any specific application, they are provided in
order for the user to fully understand how the code works.

While the terms “Device Manager” and “physical driver” refer to the
respective software components, the term “device driver” is also used in
this document. The term “device driver” refers to the combination of the
Device Driver Manager (called “Device Manager” in this book) and phys-
ical driver.

Device Drivers and System Services Manual for Blackfin Processors 7-3

Device Driver Manager

Device Driver Model Overview
The device driver model is built using a hierarchical approach. Figure 7-1
illustrates the various components of the system design.

The components shown above are:

• Application – Though typically the user’s application, this block
can be any software component that can be thought of as a client of
the Device Manager. Note that the client does not have to be a sin-
gle functional block. The Device Manager can support any number

Figure 7-1. System Design and Hierarchy

APPLICATION

DEVICE MANAGER

RTOS (OPTIONAL)

PHYSICAL
DRIVER

. . . PHYSICAL
DRIVER

SYSTEM SERVICES

Device Driver Model Overview

7-4 Device Drivers and System Services Manual for Blackfin Processors

of clients. For example, a client may be a single user application or
the client may be any number of tasks in RTOS-controlled
systems.

• RTOS – Some systems use the services of a Real-Time Operating
System (RTOS). The device driver model is not tailored to a par-
ticular RTOS nor does it require the presence of an RTOS. The
device driver model does not require any functionality or services
from an RTOS. Some RTOSs require that applications go through
the RTOS in order to access device drivers. In these systems, the
RTOS is simply viewed as a client to the Device Manager.

• Device Manager – The Device Manager provides the single point
of access into the device driver model. The Device Manager pro-
vides the API into the model. All interaction between the client
and device drivers occurs through the Device Manager. In addition
to providing the API, the Device Manager ensures that the client
makes call into the API in the proper sequence, performs synchro-
nization services as needed, and controls all peripheral DMA, via
the System Services DMA Manager, for devices that are supported
by peripheral DMA.

• Physical Drivers – Physical device drivers provide the functionality
necessary to control a physical device, for example any configura-
tions register setting, device parameter setting, and so on. Physical
drivers are responsible for hooking into the error interrupts for
their device and processing them accordingly. If a device is not sup-
ported by peripheral DMA, the physical driver must provide the
mechanism, a programmed I/O or the like, to move data through
the device.

• System Services – The device driver components rely heavily on
the functionality provided by the System Services. For example, the
Device Manager relies on the Interrupt Manager and if required,
the DMA Manager and Deferred Callback services. The function-
ality provided by the System Services is also available to physical

Device Drivers and System Services Manual for Blackfin Processors 7-5

Device Driver Manager

drivers to use. For example, a UART driver may need to know the
SCLK frequency in order to configure the UART to operate at a spe-
cific baud rate. Through the Power Management service, the
UART physical driver can ascertain the current SCLK frequency.

Both the device driver model and System Services are designed as portable
software components. They are mainly written in “C”, with some assem-
bly code in critical sections. As such, software that interacts with the
device driver model and system services must adhere to the C run-time
model, calling conventions, passing parameters, and so on. Applications
and physical drivers can be written in either C or assembly. Wherever pos-
sible, there are no dependencies on the code generation toolchain. System
include files are not required nor are the services of the toolchain’s
run-time libraries. The device driver model and System Services can be
built and run under any of the known code generation toolchains.

No dynamic memory allocation is used in the device driver model or Sys-
tem Services. Static memory allocation has been kept to a minimum and
the vast majority of all data memory required is passed into the device
driver model and System Services by the client or application. This allows
the user to determine the amount of memory allocated and from which
memory space, and the device driver model and System Services to use.

Using the Device Manager
The Device Manager provides the access point into the device driver
model. The Device Manager presents the Device Manager API to the
application or client.

This section contains:

• “Device Manager Overview” on page 7-6

• “Initialization Sequence” on page 7-16

Using the Device Manager

7-6 Device Drivers and System Services Manual for Blackfin Processors

Device Manager Overview
The Device Manager API consists of six functions:

• adi_dev_Init – Provides data and initializes the Device Manager.

• adi_dev_Terminate - Frees data and closes the Device Manager.

• adi_dev_Open – Opens the device for use.

• adi_dev_Control – Sets and detects device specific parameters.

• adi_dev_Read – Reads data from a device or queues reception buff-
ers to a device.

• adi_dev_Write – Writes data to a device or queues transmission
buffers to a device.

• adi_dev_Close – Closes the device.

In addition to the API functions into the Device Manager, the application
provides the Device Manager with a callback function. Often, the Device
Manager or physical driver encounters an event that needs to be passed to
the user application. The event may be an expected event, such as an indi-
cation that the device driver has completed processing a buffer, or it may
be an unexpected event, such as an error condition that has been generated
by the device. All events are reported back to the application via a callback
function. A callback function is simply a function within the user applica-
tion that the Device Manager calls to pass along event information.

Theory of Operation
The device driver model is built around the concept that a device is used
to move data into and/or out of the system. In most systems, a device is
used to move data into the system, where the data will be processed in
some fashion, and then another device will take the processed data and
move it out of the system. Often, there are multiple devices running

Device Drivers and System Services Manual for Blackfin Processors 7-7

Device Driver Manager

simultaneously in the system. The Device Manager provides a simple and
straightforward interface regardless of how many devices are active at any
one point in time and what the underlying implementation details are for
each device.

Data

Data that is moved into or out of the device is encapsulated in a buffer.
The Device Manager API defines three different types of buffers; a one-
dimensional buffer called ADI_DEV_1D_BUFFER, a two-dimensional buffer
called ADI_DEV_2D_BUFFER, and a circular (autobuffer type) buffer called
ADI_DEV_CIRCULAR_BUFFER. Because physically moving data around uses
valuable computing resources and has very little benefit, typically only
pointers to buffers are passed between components. The Device Manager
API defines the ADI_DEV_BUFFER data type as a pointer to a union of a one-
dimensional buffer, a two-dimensional buffer and circular buffer. Though
each of these types of buffers is processed differently, where there is no sig-
nificant difference in processing, they are collectively referred to as simply
a buffer within this text.

In general, applications provide buffers through the Device Manager API,
where the buffers are processed, then made available again to the applica-
tion. The adi_dev_Read function provides buffers to the device which are
to be filled with data that is inbound from the device. The adi_dev_Write
function provides buffers to the device that contain data to be sent out
through the device.

Buffers are always processed in the order they are received. Buffers pro-
vided to a given device do not need to be a uniform size; each individual
buffer can be any arbitrary size. Further, both one-dimensional and
two-dimensional buffers can be provided to a single device. Circular buff-
ers are a little more complex (see “Providing Buffers to a Device” on
page 7-14).

Using the Device Manager

7-8 Device Drivers and System Services Manual for Blackfin Processors

Initializing the Device Manager

Before using a device, the application or client must first initialize the
Device Manager. The client initializes the Device Manager by calling the
adi_dev_Init function, passing a portion of memory to it that the Device
Manager can use for processing. The client decides how much memory,
and from which memory space, to provide to the Device Manager; the
more memory that is provided, the more physical devices that can be
simultaneously opened.

The Device Manager requires a contiguous block of memory that can be
thought of in two parts—one part is base memory required for the Device
Manager to instantiate itself, and the other is memory that is required to
support n number of simultaneously-opened device drivers. Macros are
provided that define the amount of memory (in bytes) that are required
for the base memory and incremental device driver memory. These macros
are ADI_DEV_BASE_MEMORY and ADI_DEV_DEVICE_MEMORY. For instance, if
the client wanted to initialize the Device Manager and would have at most
four device drivers open simultaneously at any point in time, the amount
of memory required is:

ADI_DEV_BASE_MEMORY+(ADI_DEV_DEVICE_MEMORY*4)).

When called, the initialization function, adi_dev_Init(), initializes the
memory that was passed in. Like all functions within the Device Manager,
the initialization function returns a return code that indicates success or
the specific error that occurred during the function call. All Device Man-
ager API functions return the ADI_DEV_RESULT_SUCCESS value to indicate
success. All error codes are in the following form: ADI_DEV_RESULT_XXXX.

In addition to the return code, the adi_dev_Init() function returns a
count of the number of device drivers it can manage simultaneously, and a
handle into the Device Manager. The device count can be tested to ensure
the Device Manager can control the requested number of device drivers.

Device Drivers and System Services Manual for Blackfin Processors 7-9

Device Driver Manager

Another parameter passed to the adi_dev_Init() function is a critical
region parameter. When it is necessary to protect a critical region of code,
the Device Manager and all physical drivers leverage the Interrupt Man-
ager system service to protect the critical code. The critical region
parameter passed into the adi_dev_Init() function is, in turn, passed to
the adi_int_ProtectCriticalRegion() function. See “adi_int_Init” on
page 2-18 in the Interrupt Manager chapter.

Termination

When the Device Manager is no longer needed, the client can terminate
the Device Manager using the adi_dev_Terminate() function. This func-
tion is passed the Device Manager handle, given to the client in the adi_
dev_Init() function. The Device Manager closes any open physical
devices and then returns to the caller. After the return from the adi_dev_
Terminate() function, the memory that was supplied to the Device Man-
ager via the adi_dev_Init() function can be reused by the client. Once
terminated, the Device Manager must be re-initialized in order to be used
again.

Note that in many embedded systems, the Device Manager is never
terminated.

Opening a Device

After the Device Manager has been initialized, in order to use a device, the
client must first open the device with the adi_dev_Open API function.

The client passes in parameters indicating which device driver it wants to
open (the pEntryPoint parameter), which instance of the device it wants
to open (the DevNumber parameter), and the direction it wants data to flow
(inbound, outbound or both), and so on. The client also passed in the
handle to the DMA service the Device Manager and physical drivers
should use. This parameter can be NULL if the client knows DMA is not
used.

Using the Device Manager

7-10 Device Drivers and System Services Manual for Blackfin Processors

The pDeviceHandle parameter points to a location where the Device Man-
ager stores the handle to the device driver that is being opened. All
subsequent API calls for this device that is being opened must include this
handle. The ClientHandle is a parameter that the Device Manager passes
back to the client with each call to the client’s callback function.

Two other parameters are passed into the adi_dev_Open function are also
callback related. The DCBHandle parameter is a handle to the deferred call-
back service that the device driver uses to call the client’s callback
function. If DCBHandle is non-NULL, the device driver uses the specified
Deferred Callback Service for all callbacks. If the DCBHandle is NULL, all
callbacks are live; meaning that they are not deferred and are executed
immediately, typically at interrupt time. The ClientCallback parameter
points to the client’s callback function.

The callback function is called in response to asynchronous events experi-
enced by the device driver. Some events may be expected, such as the
completion of processing of a buffer, and some events may be unexpected,
such as the device generating an error condition. Regardless of the type of
event, the Device Manager calls the callback function to notify the client
of the event.

Note that dataflow through a device does not start with the adi_dev_Open
function. This function simply opens the device for use as the device may
need to be configured in some way before dataflow is enabled.

Configuring a Device

The adi_dev_Control function is used to configure and enable/disable
dataflow through a device. When opened, most device drivers initialize
with some default settings. If these default settings are sufficient for the
application, then little or no application configuration is required. Other
times, the default settings may not be appropriate for an application and
so the device needs some amount of configuring. The adi_dev_Control
function is used to set and detect device-specific configurations.

Device Drivers and System Services Manual for Blackfin Processors 7-11

Device Driver Manager

When configuration settings need to be set or detected, the client calls the
adi_dev_Control function to set or detect the parameter. The adi_dev_
Control function takes as parameters the DeviceHandle described in
“Opening a Device”, a command ID that identifies the parameter to be set
or detected, and a pointer to the memory location that contains the value
of the parameter to be set or where the value of the parameter being
detected is stored. The Device Manager defines some standard parameters;
however, physical drivers are free to add their own command IDs beyond
those defined by the Device Manager. For example. the physical device
driver for a DAC may create a command ID to set the volume level of the
output. The application developer should check with the physical driver
documentation to determine what parameters are configurable and what
the configuration choices are.

Regardless of whether or not the client needs to make configuration
changes, the client is required to make two calls into the adi_dev_Control
function. These calls set the dataflow method of the device and enable
dataflow for the device. These are described in the following sections.

Dataflow Method

The Device Manager supports three dataflow methods: circular, chained,
and chained with loopback. Prior to providing the Device Manager with
any buffers or enabling dataflow, the application must tell the Device
Manager which dataflow method to use by calling the adi_dev_Control
function with the ADI_DEV_CMD_SET_DATAFLOW_METHOD command. Only
after the dataflow method has been defined can the client provide
inbound buffers (via the adi_dev_Read function) or outbound buffers (via
the adi_devWrite function) to the device.

As shown in Figure 7-2, the circular dataflow method defines the method
whereby a single circular buffer is provided to the Device Manager, assum-
ing the device was opened for unidirectional traffic.

Using the Device Manager

7-12 Device Drivers and System Services Manual for Blackfin Processors

When providing the Device Manager with the circular buffer, the applica-
tion tells the Device Manager how many sub buffers are within the
circular buffer; two sub buffers are used for a traditional “ping/pong”
scheme, though Blackfin processors support any number of sub buffers.
The application also tells the Device Manager when it wants to be called
back during processing of the circular buffer.

Three options are provided: no callback ever, a callback after each sub
buffer is processed, or a callback after the entire buffer has been processed.
The Device Manager begins processing at the start of the buffer. If so
directed, the Device Manager notifies the application via the callback
function when each sub buffer completes or when the entire buffer has
completed processing. After reaching the end of the buffer, the Device
Manager automatically restarts processing at the top of the buffer and so
on.

As shown in Figure 7-3, with the chained dataflow method, one or more
one-dimensional and/or two-dimensional buffers are provided to the
Device Manager. Any number of buffers can be provided; buffers can be

Figure 7-2. Circular Buffer Operation

. . .

SUBBUFFER 0

SUBBUFFER 1

SUBBUFFER N

CALLBACK ON SUBBUFFER COMPLETE

CALLBACK ON ENTIRE BUFFER COMPLETE

ONE
CONTIGUOUS

BUFFER

Device Drivers and System Services Manual for Blackfin Processors 7-13

Device Driver Manager

of different sizes and both one-dimensional and two-dimensional buffers
can be provided to the same device. Each buffer, any one, none or all buff-
ers can be tagged to generate a callback to the application when they are
processed. Additional buffers can be provided at any time before or after
dataflow has been enabled. The Device Manager guarantees to process the
buffers in the order they are provided to the Device Manager.

When using the chained dataflow method, the application can command
the Device Manager to operate in synchronous mode. Normally, the
Device Manager operates in asynchronous mode. In asynchronous mode,
the adi_dev_Read and adi_dev_Write function calls return immediately to
the application before all the buffers passed to the adi_dev_Read or adi_
dev_Write function have been processed. In synchronous mode, the adi_
dev_Read and adi_dev_Write functions do not return back to the applica-
tion until all buffers provided to the adi_dev_Read or adi_dev_Write
function have been processed. Though seldom used in real-time systems,
the Device Manager supports the synchronous operating mode.

As shown in Figure 7-4, the chained with loopback method is similar to
the chained dataflow method except that after the Device Manager has
processed the last buffer, it automatically loops back to first buffer that
was provided to the device. This operation effectively creates an infinite
loop of buffers. With the chained with loopback method, the application
can provide the buffers at initialization time, let the Device Manager pro-
cess the buffers, and never have to re-supply the Device Manager with

Figure 7-3. Chained Buffers

. . .BUFFER 0 BUFFER 1 BUFFER N
START

Using the Device Manager

7-14 Device Drivers and System Services Manual for Blackfin Processors

additional buffers. As with the chained dataflow method, each buffer, any
one, none or all buffers can be tagged to generate a callback to the applica-
tion when they are processed.

Enabling Dataflow

Once the dataflow method has been defined, and buffers provided to the
device as appropriate (see “Providing Buffers to a Device”), the applica-
tion should enable dataflow by calling the adi_dev_Control function with
the ADI_DEV_CMD_SET_DATAFLOW command. Dataflow starts immediately so
the application should ensure that, if not using synchronous mode,
devices that have been opened for inbound or bidirectional data have been
provided with buffers, or else data may be lost.

Providing Buffers to a Device

Buffers are provided to a device via the adi_dev_Read and adi_dev_Write
API function calls. The adi_dev_Read function provides buffers for
inbound data, adi_dev_Write for outbound data. How the client provides
buffers to the device via these API calls is slightly different depending on
the dataflow method that has been chosen.

Figure 7-4. Chained Buffers with Loopback

. . .BUFFER 0 BUFFER 1 BUFFER N
START

Device Drivers and System Services Manual for Blackfin Processors 7-15

Device Driver Manager

When a device has been configured to use the circular dataflow method,
the application provides the device driver with one and only one buffer for
inbound data and/or one and only one buffer for outbound data. The data
buffer that is provided points to a contiguous piece of memory corre-
sponding to however many sub buffers the application wants to use.

For example, assume that the application wants to process data in
512-byte increments and wants to work in a traditional “ping/pong” type
(two sub buffer) fashion. The application provides the device driver with a
single data buffer 1024 bytes in length, consisting of two 512-byte sub
buffers. By doing this, the device driver can be using 512 bytes of the
buffer while the application can be using the other 512 bytes simulta-
neously. Another example would be an application that wants to process a
standard NTSC video frame (525 lines with 1716 bytes per line). The
data buffer that is provided to the Device Manager could be a contiguous
piece of memory 900900 bytes in size (525 * 1716). The sub buffer count
in this case is 525. Regardless of how many sub buffers are provided, with
the circular dataflow method, once the buffer has been provided to the
device driver, the application never needs to give the device another buffer
as the same one is used indefinitely.

When a device has been configured to use the chained dataflow method,
any number of one-dimensional and two-dimensional buffers can be pro-
vided to the device. Buffers can be given to the device one at a time or
multiple buffers can be provided with a single call to adi_dev_Read and/or
adi_dev_Write. The application can provide the device driver with addi-
tional buffers at any time, before or even after dataflow has been enabled.
Assuming the device driver is running in asynchronous mode, any individ-
ual buffer, no buffers or all buffers can be flagged to generate a callback
when the device driver has completed processing it. Each buffer can be of
a different size and both one-dimensional and two-dimensional buffers
can be provided to the same device.

Using the Device Manager

7-16 Device Drivers and System Services Manual for Blackfin Processors

Providing buffers to devices that have been configured with the chained
with loopback dataflow method is identical to providing buffers to devices
using the chained dataflow method, except that buffers can only by pro-
vided while dataflow is disabled.

Closing a Device

When the device is no longer needed by the client, the device should be
closed via the adi_dev_Close API function call. The adi_dev_Close func-
tion terminates dataflow if it is enabled and frees up all resources,
including DMA and others that were used by the device driver. Should the
application need to re-use the device after it is closed, it can be re-opened
via the adi_dev_Open function.

Callbacks

The Device Manager calls the application’s callback function to notify the
client of events that occur. Events may be expected events (such as com-
pletion of the processing of a buffer) or unexpected events (such as an
error occurring on a device). Typically, the client’s callback function is
organized as the equivalent of a “C” switch statement, invoking the appro-
priate processing as required by the given event type. The Device Manager
defines several events and physical drivers can add additional events as
required by the device they are controlling.

Initialization Sequence

Because the Device Manager and physical drivers rely on the System Ser-
vices, the System Services should be initialized prior to opening a device
driver. For example, when opening a device driver, the Device Manager
requires handles to the Deferred Callback and DMA services (assuming
both are being used). As such, it is good practice to initialize and open the
System Services before opening any device drivers. See “Initialization” on
page 1-7 and “Termination” on page 1-9 for more information on initial-
izing and terminating the device drivers and system services.

Device Drivers and System Services Manual for Blackfin Processors 7-17

Device Driver Manager

Stackable Drivers

It is possible to create drivers that call other drivers. For example, the
Blackfin EZ-Kit board contains an AD1836 audio codec. The AD1836
codec has a control and status interface that is suitable for connection to
an SPI port, while the AD1836 audio data is provided to/from the device
by using a high speed serial line, in this case the SPORT peripheral. If a
system was being developed where the AD1836 codec was the only device
that would ever be connected to the processor, then a single physical
device driver could be written that controls and manages both the SPI and
SPORT.

Alternatively, and especially so if other peripherals are to share the SPI
port (for example, separate SPI and SPORT drivers could be controlled by
an AD1836 driver) that hierarchically sits above the SPI and SPORT
driver, making calls into those physical drivers as necessary. In this stack-
able fashion, it is possible to create mode complex drivers such as the
AD1836 driver or a TCP/IP stack driver that sits atop an Ethernet
controller.

Device Manager Design

7-18 Device Drivers and System Services Manual for Blackfin Processors

Device Manager Design
The Device Manager provides the single point of access into the device
driver model. The Device Manager provides the application with the API
into the device drivers. All interaction between the client and device driv-
ers occurs through the Device Manager—applications never
communicate directly with a physical driver. The Device Manager also
provides all DMA control, sequencing, queuing, and so on, for devices
that are supported by peripheral DMA.

This section contains:

• “Device Manager API Description” on page 7-18

• “Device Manager Code” on page 7-23

Users typically do not need to understand the design and implementation
details of the Device Manager. This section is included for those users who
want to have a deeper understanding of the design. This section is particu-
larly useful however, for writers of physical drivers who can use this
information to aid in the development of physical drivers.

Device Manager API Description
The macros, definitions and data structures defined by the Device Man-
ager API are key to understanding the design of the Device Manager. The
Device Manager API is described in the file adi_dev.h. This file is located
in the Blackfin/Include/Drivers directory

This section contains:

• “Memory Usage Macros” on page 7-19

• “Handles” on page 7-20

• “Dataflow Enumerations” on page 7-20

Device Drivers and System Services Manual for Blackfin Processors 7-19

Device Driver Manager

• “Command IDs” on page 7-20

• “Callback Events” on page 7-21

• “Return Codes” on page 7-21

• “Circular Buffer Callback Options” on page 7-21

• “Buffer Data Types” on page 7-21

• “Physical Driver Entry Point” on page 7-22

• “API Function Definitions” on page 7-22

Memory Usage Macros

The first section in the adi_dev.h file contains macros that define the
amount of memory usage by the Device Manager. These macros can be
used by the client to determine how much memory should be allocated to
the Device Manager via the adi_dev_Init function.

The ADI_DEV_BASE_MEMORY defines the number of bytes that the Device
Manager needs. The ADI_DEV_DEVICE_MEMORY defines the number of bytes
the Device Manager needs to control each physical driver. When provid-
ing memory to the Device Manager, the client should provide the
following amount of memory.

 ADI_DEV_BASE_MEMORY + (n * ADI_DEV_DEVICE_MEMORY)

Where “n” is the maximum number of physical drivers that are to be
simultaneously opened in the system.

Device Manager Design

7-20 Device Drivers and System Services Manual for Blackfin Processors

Handles

Next in the adi_dev.h file are typedefs for the various handle types that
are used by the Device Manager. Handles are typically pointers to data
structures that are used within the Device Manager. They are used as a
means to identify the data pertaining to the device being managed
quickly.

Dataflow Enumerations

Next in the adi_dev.h file are enumerations for the various dataflow
methods supported by the Device Manager and enumerations indicating
the dataflow direction. These enumerations are not extensible by physical
drivers quickly.

Command IDs

The next section enumerates the command IDs that are defined by the
Device Manager. These command IDs are passed to the Device Manager
via the adi_dev_Control function.

Physical drivers can add any number of additional command IDs that are
relevant to their particular device. Physical drivers begin adding their own
command IDs beginning with the ADI_DEV_CMD_PDD_START enumeration
value.

Also included in this section is a data structure defining a configuration
command pair. This is provided as a convenience that allows clients to
pass a table of commands into the adi_dev_Control function, rather than
being forced to call the adi_dev_Control function for each command (see
on page 7-27).

Device Drivers and System Services Manual for Blackfin Processors 7-21

Device Driver Manager

Callback Events

The next section in the adi_dev.h file contains enumerations for callback
events. When an event occurs, the client’s callback function is invoked
and passed the enumeration of the event that occurred.

The Device Manager defines some common events. As with command
IDs, physical drivers can add their own callback events beginning with the
ADI_DEV_EVENT_PDD_START enumeration value.

Return Codes

The next section in the adi_dev.h file contains enumerations for return
codes. All API functions within the Device Manager return a code indicat-
ing the results of the function call.

The Device Manager defines some typical return codes. As with command
IDs and callback events, physical drivers can add their own return codes
beginning with the ADI_DEV_RESULT_PDD_START enumeration value.

Circular Buffer Callback Options

The next section in the adi_dev.h file contains enumerations for the type
of callback the client requests when the Device Manager is using the circu-
lar buffer dataflow method.

Enumerations are provided indicating the Device Manager should make
no callbacks, make a callback on sub buffer completion, or make a call-
back on whole buffer completion.

Buffer Data Types

The ADI_DEV_1D_BUFFER, ADI_DEV_2D_BUFFER and ADI_DEV_CIRCULAR_
BUFFER data structures are used to provide data buffers to the driver. At the
top of these data structures is a reserved area. This reserved area allows the

Device Manager Design

7-22 Device Drivers and System Services Manual for Blackfin Processors

device drivers access to a small amount of memory that is attached to each
buffer. How, or even if, the device driver uses this reserved area is a matter
that depends on the implementation.

Note that if the physical device driver is supported by peripheral DMA,
the Device Manager uses this reserved area to create a DMA descriptor
describing the buffer. This descriptor is in turn passed to the DMA Man-
ager System Service in order to use DMA to move the data, as described in
the buffer structure.

If the physical driver is not supported by peripheral DMA, the physical
driver can use this reserved area for any purpose; for example, queue man-
agement, or whatever mechanism the physical driver uses to move the
data.

Also included in this section is a data structure, ADI_DEV_BUFFER, which
represents a union of one-dimensional, two-dimensional and circular buff-
ers. This datatype is used as a convenient method to refer to a buffer in a
generic fashion, without knowing the specific type of buffer. The API
functions adi_dev_Read and adi_dev_Write use the ADI_DEV_BUFFER type
when passing buffers to these functions.

Physical Driver Entry Point

The next section in the adi_dev.h file contains a data structure that
describes the entry point into a physical driver. The ADI_DEV_PDD_ENTRY_
POINT structure is simply a data type that points to the functions within
the physical driver that are called by the Device Manager.

API Function Definitions

The last section in the adi_dev.h file describes the API calls into the
Device Manager. Each function is declared here with the appropriate
parameters for each call. Each function is described in detail in “API
Functional Description” on page 7-24.

Device Drivers and System Services Manual for Blackfin Processors 7-23

Device Driver Manager

Device Manager Code
All code for the Device Manager is kept in the adi_dev.c file. This sec-
tions describes the code of the Device Manager. This file is located in the
Blackfin/Lib/Src/Drivers directory.

This section contains:

• “Data Structures” on page 7-23

• “Static Data” on page 7-23

• “Static Function Declarations” on page 7-23

• “API Functional Description” on page 7-24

Data Structures

The only additional data structures that are defined are the ADI_DEV_MAN-
AGER and ADI_DEV_DEVICE structures. These structures contain all the data
necessary for operation of the Device Manager itself and for management
and control of the physical driver.

Static Data

The Device Manager uses a single piece of static data. The InitialDe-
viceSettings item is copied into an ADI_DEV_DEVICE structure when a
device is opened. This provides a quick and efficient means to initialize an
ADI_DEV_DEVICE structure without having to populate each item
individually.

Static Function Declarations

This section declares static functions that are used within the Device Man-
ager. Each of these functions is described in detail below. Only the API
functions are declared to be global, all other functions are static to the
Device Manager.

Device Manager Design

7-24 Device Drivers and System Services Manual for Blackfin Processors

API Functional Description

This section describes the functionality that is performed for each of the
API functions in the Device Manager. The API functions include:

• adi_dev_Init – on page 7-24

• adi_dev_Open – on page 7-24

• adi_dev_Close – on page 7-25

• adi_dev_Read – on page 7-26

• adi_dev_Write – on page 7-27

• adi_dev_Control – on page 7-27

adi_dev_Init

The adi_dev_Init function is used to initialize the Device Manager.

For detailed reference information, see “adi_dev_Init” on
page 7-50.

Processing begins by checking to ensure enough memory was provided to
operate the Device Manager. The function then determines how many
physical devices can be controlled with the remaining memory provided.

The critical region pointers are then stored and the data structure for each
device that can be supported is marked as available for use. The function
then returns to the caller.

adi_dev_Open

The adi_dev_Open function is used to open a device for use.

For detailed reference information, see “adi_dev_Open” on
page 7-52.

Device Drivers and System Services Manual for Blackfin Processors 7-25

Device Driver Manager

Processing begins by finding a free ADI_DEV_DEVICE data structure to be
used to control the device. The address of that data structure is stored in
the client-provided location as the handle to the device.

The ADI_DEV_DEVICE structure is initialized and populated with the infor-
mation describing the device.

Once the ADI_DEV_DEVICE structure has been initialized, the Device Man-
ager calls the adi_pdd_Open function of the physical driver. The physical
driver then executes, doing whatever it needs to do to open the device it
controls. If for some reason the physical driver fails to open the device, the
Device Manager frees up the ADI_DEV_DEVICE structure and returns the
return code from the physical device back to the application. Note that
because the return code values can be extended by the physical device, the
return code can be as specific as possible as to why the device failed to
open.

If the physical device opens correctly, the Device Manager interrogates the
physical device to see if it is supported by peripheral DMA. The Device
Manager saves this information in the ADI_DEV_DEVICE structure.

adi_dev_Close

The adi_dev_Close function is called by the application when the device
is no longer needed.

For detailed reference information, see “adi_dev_Close” on
page 7-48.

After the device handle has been validated, assuming error checking is
enabled, the function calls the adi_pdd_Control function of the physical
driver to terminate dataflow. Once dataflow has been terminated, any
DMA channels that were opened for the device are closed. The adi_pdd_
Close function of the physical driver is then called to shut down the
device and free up any resources used by the physical device. Lastly, the
ADI_DEV_DEVICE structure is flagged as closed so that it may be reused at
some later point in time.

Device Manager Design

7-26 Device Drivers and System Services Manual for Blackfin Processors

adi_dev_Read

The adi_dev_Read function is called by the application to provide the
device with buffers into which inbound data is to be stored. Assuming
error checking is enabled, processing begins in this function by validating
the device handle, and insuring that the device has been opened for
inbound, or bidirectional, traffic and that the dataflow method has already
been defined. If the dataflow method has not yet been defined, the Device
Manager does not have enough information to know what to do with the
buffer.

For detailed reference information, see “adi_dev_Read” on
page 7-54.

The pBuffer parameter passed into the function can point to a single
buffer or a chain of buffers. Further, if the device is supported by periph-
eral DMA, the reserved area within the buffer data structure needs to be
configured appropriately. All these details are taken care of in the Pre-
pareBufferList static function (see on page 7-32 for more information
on this function).

Once the buffer list has been prepared, a check is made to see if the device
is supported by peripheral DMA. If so, the DMA Manager is called to
queue the buffers on the proper DMA channel using the appropriate data-
flow method; chained descriptors are passed to the DMA Manager via the
adi_dma_Queue function, and circular buffers passed via the adi_dma_Cir-
cular function. If peripheral DMA is not supported, the buffers are
passed directly to the physical driver using the adi_pdd_Read function.
Note that when a device is supported by peripheral DMA, the physical
driver is extremely simple as the Device Manager handles all data buffers
for the physical device.

Lastly, a check is made to see if the device is operating in synchronous or
asynchronous mode. If it is operating in asynchronous mode, the adi_
dev_Read function returns to the application immediately. If it is operat-
ing in synchronous mode, the adi_dev_Read function waits in a loop until

Device Drivers and System Services Manual for Blackfin Processors 7-27

Device Driver Manager

the buffer or the last buffer within the list of buffers (if multiple buffers
were provided as a parameter) has been processed before returning to the
application. Again, the physical driver has no knowledge of, nor the need
for the synchronous/asynchronous mode information.

adi_dev_Write

The adi_dev_Write function operates virtually identically to the adi_dev_
Read function, except the data is destined for the outbound rather than
inbound direction.

For detailed reference information, see “adi_dev_Write” on
page 7-56.

adi_dev_Control

The adi_dev_Control function is used to process configuration-type com-
mands from the application. Like all the API functions, if error checking
is enabled, the device handle is validated upon entry into the function.

For detailed reference information, see “adi_dev_Control” on
page 7-49.

Processing within the adi_dev_Control function is based upon the com-
mand ID that is passed in as a parameter. Some commands can be
processed entirely by the Device Manager, some commands are processed
by the physical driver only, while others need to be processed by both the
Device Manager and the physical driver. In order to accomplish this, the
bulk of this function is designed as a “C” switch statement. Each com-
mand that the Device Manager cares about has an entry in the statement.

When a command is passed that the Device Manager needs to process, the
Device Manager processes the command and then sets a flag stating
whether or not the command needs to passed down to the physical driver.
When processing gets to the bottom of the function, if the command
needs to be passed to the physical driver, the adi_pdd_Control function of
the physical driver is called and the return code from the physical driver is

Device Manager Design

7-28 Device Drivers and System Services Manual for Blackfin Processors

passed back to the application. This arrangement allows each physical
driver to extend the command IDs and allow them to create their own
unique command IDs that the application can control.

The Device Manager processes the following commands:

• ADI_DEV_CMD_GET_2D_SUPPORT – This command is used to deter-
mine whether or not the device supports two-dimensional data
movement. On Blackfin processors, if a device is supported by
peripheral DMA, then two-dimensional data movement is pro-
vided. If the device is not supported by peripheral DMA, the
command is passed to the physical driver for determining if the
physical driver can support 2D data.

• ADI_DEV_CMD_SET_SYNCHRONOUS – This command is used to put the
Device Manager in synchronous mode for the given device. The
only processing here is to set the flag in the ADI_DEV_DEVICE struc-
ture. This command is never passed to the physical driver as all
synchronous activity is controlled by the Device Manager. Hiding
this from the physical driver has the added benefit of physical driv-
ers not caring, nor having to take special processing, to
accommodate synchronous or asynchronous modes. The physical
driver can operate in whatever manner is best suited to the device.

• ADI_DEV_CMD_SET_DATAFLOW_METHOD – This command is used to set
the dataflow method for the given device. If the device is not sup-
ported by peripheral DMA, then the Device Manager takes no
action other than making note of the dataflow method and passing
the command along to the physical driver via the adi_pdd_Control
function. If the device is supported by peripheral DMA, then the
default value used for the DMA configuration control register is
updated with settings appropriate for the dataflow method. Fur-
ther, once the dataflow method has been defined by the
application, the Device Manager then has enough information to
open whatever DMA channels are necessary in support of the
device. The physical driver is interrogated via the adi_pdd_Control

Device Drivers and System Services Manual for Blackfin Processors 7-29

Device Driver Manager

function as to which DMA controller and channel number the
device has been assigned for inbound and/or outbound data. The
DMA Manager is then accessed to open the appropriate channels
with the appropriate modes, such as circular or chained descriptors.
If the device is opened with the ADI_DEV_MODE_CHAINED_LOOPBACK
dataflow method, the DMA Manager is so configured. Note that
the ADI_DEV_DEVICE structure is kept updated with the appropriate
information as to which controllers and channels are opened or
closed, what the operating modes are, and so on.

• ADI_DEV_CMD_SET_DATAFLOW – This command is issued to enable or
disable dataflow on a device. The logic involved to enable or dis-
able dataflow is fairly complex and isolated in a static function
called SetDataflow (see on page 7-34 for more information on this
function).

• ADI_DEV_CMD_SET_STREAMING - This command is issued to enable or
disable the streaming mode of the device driver. (To fully under-
stand what the streaming mode operation entails, users should be
familiar with the streaming capability of the DMA Manager Sys-
tem Service (“DMA Manager” on page 6-1). Though peripheral
DMA support is not required of a device that supports streaming,
devices that are supported by peripheral DMA automatically lever-
age the streaming capabilities of the DMA Manager.)

When streaming mode is enabled, the device is configured to treat
data coming into and/or out of the device as a continuous stream
of data. This typically allows the device driver to transmit and
receive data through the device at maximum speed.

In order to use the streaming mode of the Device Manager, the
application must ensure that the following conditions are met:

• The device always has buffers to process and never runs out
of buffers. This means that the application guarantees that
devices that are opened for inbound or bidirectional data-

Device Manager Design

7-30 Device Drivers and System Services Manual for Blackfin Processors

flow always have a buffer in which to store data that is
received and that devices that are opened for outbound or
bidirectional dataflow always have a buffer to transmit out
through the device.

• The system timing is such that the Device Manager can
acknowledge and service callbacks for a buffer before a call-
back for another buffer on that same device and going in
that same direction (inbound or outbound) is generated.

These conditions can be fairly easily met in most systems.

Device Drivers and System Services Manual for Blackfin Processors 7-31

Device Driver Manager

Static Functions

This section describes the static functions within the Device Manager that
are used in support of the API functions.

PDDCallback

The PDDCallback function is called in response to events from the physical
driver. After error checking the device handle, if error checking is enabled,
the Device Manager simply passes these events back to the application.

Note that in this routine (and the DMACallback function) the Device Man-
ager calls the client callback function directly, without concern for
whether or not live callbacks are in effect. It can do this as the physical
driver is passed the handle to the Deferred Callback Service as part of the
adi_pdd_Open function. As such, if the Deferred Callback Service is being
used, the invocation of the PDDCallback function in the Device Manager
has already been deferred by the physical driver. In this way, the PDDCall-
back function can directly call the client’s callback function.

DMACallback

The DMACallback function is called in response to DMA events from the
DMA Manager for devices that are supported by peripheral DMA. Assum-
ing error checking is enabled, the device handle is first validated. The
function then determines what event has occurred and performs its pro-
cessing based on the event type.

If the event indicates that a descriptor has been processed, the processed
flag and processed count fields of the buffer are updated. The application’s
callback function is then invoked in order to notify the application of the
event.

If the event indicates that DMA processing has generated the ADI_DEV_
EVENT_SUBBUFFER_PROCESSED event, the function makes the appropriate
callback into the application stating that a sub buffer has completed pro-
cessing. If the event indicates that DMA processing has generated the ADI_

Device Manager Design

7-32 Device Drivers and System Services Manual for Blackfin Processors

DEV_EVENT_BUFFER_PROCESSED event, the function makes the appropriate
callback into the application stating that the whole buffer has completed
processing.

The DMA Manager reports asynchronous DMA errors via the callback
mechanism. There errors are in turn passed back to the client via its call-
back function.

Note that in this routine (and the PDDCallback function), the Device
Manager calls the client callback function directly, without concern for
whether or not live callbacks are in effect. It can do this as the DMA Man-
ager is passed the handle to the Deferred Callback Service as part of the
adi_dma_Open function. As such, if the Deferred Callback Service is being
used, the invocation of the DMACallback function in the Device Manager
has already been deferred by the DMA Manager. In this way, the dmaCall-
back function can directly call the client’s callback function.

PrepareBufferList

The PrepareBufferList function prepares a single buffer or list of buffers
for submission to the DMA Manager, if the device is supported by periph-
eral DMA, or the physical driver, if the device is not supported by
peripheral DMA.

The function begins by determining the value of the direction field in the
DMA Configuration Control register. Because the data structures for cir-
cular buffers, one-dimensional buffers and two-dimensional buffers are
different, each must be treated separately.

If passed as a circular buffer, the function assumes there is only one buffer
in the buffer list. For devices opened with the ADI_DEV_MODE_CIRCULAR
dataflow method, only a single buffer should be provided so this is a valid
assumption to make. The function configures the DMA Configuration
Control register according to the parameters within the circular buffer
data structure. The Configuration Control register is set to generate inner
loop interrupts if the application wants to be called back when each sub

Device Drivers and System Services Manual for Blackfin Processors 7-33

Device Driver Manager

buffer has completed processing, or is set to generate outer loop interrupts
if the application wants to be called back when the entire buffer has com-
pleted processing, or neither if the application does not want any
callbacks. The word size is set to the width of a data element in the buffer
and the direction field is set appropriately. The function then returns to
the caller.

If the buffer type passed into the function specifies one-dimensional or
two-dimensional buffers, the processing is largely the same except where
noted.

For each buffer passed in, the processed flag and processed count fields
within the buffer structure are cleared. If the physical device is supported
by peripheral DMA, the reserved area at the beginning of each buffer
structure is converted into a large model descriptor. The descriptor is then
configured according to the parameters within the buffer structure,
including such things as buffer size, width of an element, data direction,
whether or not it is one-dimensional or two-dimensional, and so on. The
descriptor for each buffer in the chain is updated to point to the next
descriptor, for the corresponding buffer, within the chain. The last
descriptor in the chain, corresponding to the last buffer within the chain,
is updated to point to NULL for the next descriptor. After processing is
completed, a chain of buffers is established. All the buffers are appropri-
ately initialized and the reserved area in each buffer contains a DMA
descriptor for that buffer that in turn points to the DMA descriptor for
the next buffer in the chain.

Lastly, if the device is opened for synchronous mode and peripheral DMA
is supported, the last descriptor in the chain is forced to generate a call-
back from the DMA Manager to the Device Manager. This allows the
Device Manager to acknowledge when the last buffer has been processed
so that it can update the processed fields appropriately. The last descriptor
also acts as the trigger that responds each time the adi_dev_Read/adi_dev_
Write function returns back to the application.

Device Manager Design

7-34 Device Drivers and System Services Manual for Blackfin Processors

SetDataflow

The SetDataflow function is called in response to the ADI_DEV_CMD_SET_
DATAFLOW command being received by the adi_dev_Control API function.
This function enables or disables dataflow according to the flag.

The SetDataflow function begins processing by ensuring the system is not
trying to enable dataflow when it is already enabled or disable dataflow
when it is already disabled. If this check is not performed, DMA and or
the physical drivers would likely generate errors.

When dataflow is being disabled, the function first calls the adi_pdd_Con-
trol function of the physical driver to disable dataflow. If the device is
using peripheral DMA, it is important to disable dataflow at the device
first, before shutting down DMA. Once the physical driver has disabled
dataflow, any and all DMA channels that were opened for the device are
closed. This is affected by calls to the DMA Manager.

When dataflow is being enabled, if the device is supported by peripheral
DMA, the function first enables dataflow on the DMA channels by mak-
ing calls into the DMA Manager to enable dataflow on the channel or
channels that have been opened for the device. After the dataflow on the
DMA channels has been enabled, the function calls the adi_pdd_Control
function of the physical driver to enable dataflow.

Device Drivers and System Services Manual for Blackfin Processors 7-35

Device Driver Manager

Physical Driver Design
The physical driver is that part of the driver that controls the hardware for
the device. Only the physical driver has knowledge of the device’s control
and status registers, and the fields within those registers. Unlike the
Device Manager, where there is only a single Device Manager in the sys-
tem, there can be any number of physical drivers present in a system.

This section contains:

• “Physical Driver Design Overview” on page 7-35

• “Physical Device Driver API Description” on page 7-37

• “Physical Driver Include File (“xxx.h”)” on page 7-38

• “Physical Driver Source (“xxx.c”)” on page 7-40

Physical Driver Design Overview
Under application control, only the Device Manager communicates with
each of the physical device drivers. Applications never interact directly
with a physical driver or vice versa. However, similar to the execution
sequence that applications have with the Device Manager, the Device
Manager controls the physical device drivers in much the same manner.
The Device Manager opens, controls, and closes physical device drivers
analogous to how the application opens, controls, and closes the Device
Manager.

Each physical driver in the system is controlled independently from the
other physical drivers in the system. While multiple physical drivers can
exist simultaneously in a system, multiple physical drivers should never be
controlling the same device.

Physical Driver Design

7-36 Device Drivers and System Services Manual for Blackfin Processors

In general, a physical driver should control all instances of a device within
a system. For example, if there are four serial ports (SPORTS) in the sys-
tem, a single physical driver for the SPORT peripheral should be capable
of controlling all four serial ports individually and simultaneously.

The physical driver is responsible for hooking any and all interrupts as
needed for the physical device. Many physical devices generate interrupts
on error conditions. These interrupts should be caught by the physical
driver and passed back up as an event via the callback mechanism. The
Interrupt Manager provides a very simple, straightforward mechanism
that should be used for all interrupt processing. This makes the task of
porting device drivers to different operating environments, toolchains and
operating systems very straightforward.

If a device is supported by peripheral DMA, the physical driver is greatly
simplified as the Device Manager typically controls all DMA interaction,
without any involvement from the physical driver. When a device is
opened, the Device Manager interrogates the physical driver as to whether
or not the device is supported by peripheral DMA. If the physical driver
responds in the affirmative, the Device Manager controls all DMA activity
via the DMA Manager API, including initialization, providing data buff-
ers, callback mechanisms and so on. As such, the Device Manager never
calls the adi_pdd_Read and adi_pdd_Write routines of a physical driver
that is supported by peripheral DMA. Physical drivers for devices that are
supported by peripheral DMA are quite simple to implement.

For devices that are not supported by peripheral DMA, physical drivers
can still take advantage of the DMA Manager as memory DMA can be an
effective strategy for reading/writing to devices that use programmed I/O.
If directed to use deferred callbacks, physical drivers should use the ser-
vices of the Deferred Callback Manager exclusively in order to post
callbacks into the Device Manager. See “Deferred Callback Manager” for
more information.

Device Drivers and System Services Manual for Blackfin Processors 7-37

Device Driver Manager

Physical drivers have their own API, which is accessed by the Device Man-
ager. The sections below describe the API and functionality that should be
provided by the physical driver.

Physical Device Driver API Description
The API into a physical device driver is similar to the API between the
Device Manager and the application in that there is a function in the
physical driver API that maps to each function in the Device Manager
API, except for adi_dev_Init. These functions are all prefixed with adi_
pdd and are defined in the adi_dev.h Device Manager’s include file.

The physical device driver functions are encapsulated in a structure called
ADI_DEV_PDD_ENTRY_POINT. Each physical driver exports an entry point
structure. The application passes the address of this structure to the
Device Manager as part of the adi_dev_Open function call. The Device
Manager, in turn, uses this data structure to call the individual routines in
the physical driver. This mechanism allows multiple physical drivers to
exist in the same system without causing name space conflicts.

There are five functions in the physical driver API. These functions are
described in the sections below. The API functions include:

• adi_pdd_Open – Opens a device for use.

• adi_pdd_Close – Closes a device.

• adi_pdd_Read – Provides buffers for reception of data from a
device.

• adi_pdd_Write – Provides buffers containing data for transmission
out the device.

• adi_pdd_Control – Configures the device.

Physical Driver Design

7-38 Device Drivers and System Services Manual for Blackfin Processors

Physical Driver Include File (“xxx.h”)
The API for physical drivers is defined in the adi_dev.h include file of the
Device Manager. However, physical drivers can extend some of the defini-
tions and enumerations defined by the Device Manager. Additional
command IDs, event IDs and return codes can be created by each physical
driver. These extensible definitions are described below. These definitions
are normally defined in an include file provided with the physical driver.
For example, the PPI driver, whose code is contained in the file adi_ppi.c
has a companion adi_ppi.h include file. The only contents of the include
file are the extensible definitions that the physical driver is making avail-
able to the application.

Client applications should include the Device Manager adi_dev.h file,
and the include file for each of the physical drivers they will be using. For
example, a client application using the PPI physical driver should include
the adi_dev.h and adi_ppi.h include files. The adi_dev.h include file and
physical driver include files for all Analog Devices provided drivers are
found in the Blackfin/Include/Drivers directory.

Extensible Definitions

The physical driver can define its own extensions to the command IDs,
event IDs and return codes, beyond those already defined by the Device
Manager in the adi_dev.h file.

The last defined command ID defined by the Device Manager is labeled
ADI_DEV_CMD_PDD_START. Physical drivers can create any number of addi-
tional command IDs as long as they begin the enumeration higher than
the ADI_DEV_CMD_PDD_START value. Applications can issue these command
ID via the adi_dev_Control API function. When the adi_dev_Control
function of the Device Manager sees a command ID greater than the ADI_
DEV_CMD_PDD_START value, the Device Manager passes the call onto the
physical driver’s adi_pdd_Control function, passing along the parameters

Device Drivers and System Services Manual for Blackfin Processors 7-39

Device Driver Manager

provided by the application. This gives the physical driver the option of
creating additional command IDs that are relevant to the device being
controlled.

For example, a physical driver for a DAC may define a command ID that
allows the application to set or detect the output volume level for the
DAC.

In a similar fashion, physical drivers can create additional event IDs that
they can pass back to the application. The last event ID defined by the
Device Manager is labeled ADI_DEV_EVENT_PDD_START. Physical drivers can
create any number of additional event IDs as long as they begin the enu-
meration higher than the ADI_DEV_EVENT_PDD_START value. Physical
drivers can send these events to the application via a callback to the Device
Manager. When the Device Manager’s PDDCallback function is passed an
event ID greater than the ADI_DEV_EVENT_PDD_START value, it passes the
event and parameters passed to the Device Manager’s callback function
along to the application. This gives the physical driver the option of creat-
ing additional event IDs that are relevant to the device being controlled.
For example, a physical driver that is controlling a device that is detecting
the level of a signal can create an event that notifies the application when
the signal has reached some predetermined value.

Physical drivers can also return custom-defined error codes. The last
return code defined by the Device Manager is entitled ADI_DEV_RESULT_
PDD_START. Physical drivers can create any number of additional return
codes as long as they begin the enumeration higher than the ADI_DEV_
RESULT_PDD_START value. Physical drivers can return these error codes in
response to any physical driver API function call from the Device Man-
ager. The Device Manager routinely looks for the ADI_DEV_RESULT_
SUCCESS error code. Anything other than ADI_DEV_RESULT_SUCCESS is
interpreted to be an error of some kind. When a physical driver API func-
tion returns an error code not equal to ADI_DEV_RESULT_SUCCESS, the
Device Manager passes the error code back to the application as the return

Physical Driver Design

7-40 Device Drivers and System Services Manual for Blackfin Processors

value for the Device Manager API function that triggered the error. This
gives the physical driver the option of creating additional return codes that
are relevant to the device being controlled.

For example, a physical driver may return a unique error code in response
to a command to affect a parameter on the device. The physical driver
could return an error code that provides some high level of detail as to
what caused the error.

ADI_DEV_PDD_ENTRY_POINT

The physical driver’s include function needs to include a declaration of
the entry point into the driver. This declaration should declare, as a global
variable, the address of the entry point for the physical driver. The appli-
cation passes the address of the entry point to the Device Manager when
the device is opened. For example, the line

 extern ADI_DEV_PDD_ENTRY_POINT PPIEntryPoint;

 // entry point to the PPI driver

in the PPI driver’s include file tells the application to pass the variable
PPIEntryPoint as the entry point parameter in the adi_dev_Open function
call to open the PPI device driver.

Physical Driver Source (“xxx.c”)
All functions within the physical driver source code, including the actual
physical driver API functions, should be declared static so that they are
not exposed to any other software component. The only global piece of
code or data should be the entry point address. The entry point is a simple
structure that contains the addresses of the physical driver API functions
in the order shown below.

 ADI_DEV_PDD_ENTRY_POINT PPIEntryPoint = {

 adi_pdd_Open,

 adi_pdd_Close,

Device Drivers and System Services Manual for Blackfin Processors 7-41

Device Driver Manager

 adi_pdd_Read,

 adi_pdd_Write,

 adi_pdd_Control

 };

Source code for all Analog Devices supplied physical drivers is located in
the Blackfin/Lib/Src/Drivers directory.

All code within the driver source should be in support of the five physical
driver API functions. These functions and the logic that they need to pro-
vide are described below. All physical driver API functions must return an
error code. The Device Manager checks the return code for every physical
driver API call. If the physical driver returns anything other than ADI_DEV_
RESULT_SUCCESS, it assumed to be some type of failure.

Similar to what is implemented in the Device Manager, it is highly
recommended that physical drivers implement some type of
switchable error checking, ideally using the ADI_DEV_DEBUG macro.
As a minimum, physical driver handles (ADI_DEV_PDD_HANDLE)
should be validated in each API function.

adi_pdd_Open

The adi_pdd_Open function is called by the Device Manager in response to
the application calling the adi_dev_Open function. Its purpose is to open
the device for use.

For detailed reference information, see “adi_pdd_Open” on
page 7-60.

The adi_pdd_Open function should first verify that the device being
requested is available for use and supports the data direction requested.
Appropriate error codes should be returned should the device be unavail-
able or not support the requested direction.

Physical Driver Design

7-42 Device Drivers and System Services Manual for Blackfin Processors

The device being controlled should be initialized and flushed of any stray
data or pending interrupts. Any interrupts that are required to be handled
in support of the device should be hooked. For devices that are supported
with peripheral DMA, typically only the error interrupt needs to be
hooked. The Interrupt Manager of the System Services should be used for
all hooking of interrupts. Enabling/disabling of interrupts through the
System Interrupt Controller (SIC) should also be accomplished using the
Interrupt Manager service calls.

The physical driver should save the handle to the callback service. If
non-NULL, meaning that deferred callbacks are in use, the physical driver
should invoke all callbacks through the service identified by the callback
service handle. If NULL, meaning all callbacks should be live and not
deferred, the physical driver should call the Device Manager’s callback
function directly when sending events.

The physical driver should also save the ADI_DEV_PDD_HANDLE value in the
location provided by the Device Manager. The Device Manager passes this
handle back to the physical driver in all other API function calls.

The adi_pdd_Open function should return ADI_DEV_RESULT_SUCCESS if
successful.

adi_pdd_Control

The adi_pdd_Control function is called by the Device Manager in
response to the application calling the adi_dev_Control function. Its pur-
pose is to process configuration-type commands from the Device Manager
and client application. Like all the API functions, if error checking is
enabled, the routine should validate the physical driver handle upon entry
into the function.

For detailed reference information, see “adi_pdd_Control” on
page 7-59.

Device Drivers and System Services Manual for Blackfin Processors 7-43

Device Driver Manager

Processing within the adi_pdd_Control function should be based upon
the command ID that is passed in as a parameter. Of the command IDs
enumerated by the Device Manager in the adi_dev.h file, as a minimum,
physical drivers must process the following commands:

• ADI_DEV_CMD_SET_DATAFLOW – Turns on and off the flow of data
through the device.

• ADI_DEV_CMD_GET_PERIPHERAL_DMA_SUPPORT – Responds with TRUE
or FALSE if the device is supported by peripheral DMA. If the
device is supported by peripheral DMA, the adi_pdd_Control
function should also be prepared to respond to the following com-
mand IDs:

• ADI_DEV_CMD_GET_INBOUND_DMA_PMAP_ID – Responds with
the DMA peripheral map (PMAP) ID for the given device.

• ADI_DEV_CMD_GET_OUTBOUND_DMA_PMAP_ID – Responds with
the DMA peripheral map (PMAP) ID for the given device.

In most cases, the adi_pdd_Control function of the physical driver should
be constructed similarly to a “C” style switch statement. Each command
that the physical driver cares about, including the required command IDs
listed above and any additional command IDs created by the physical
driver itself, should have an entry in the statement. If the physical driver
receives a command ID it does not understand, it should typically return
the ADI_DEV_RESULT_NOT_SUPPORTED return code.

Physical Driver Design

7-44 Device Drivers and System Services Manual for Blackfin Processors

adi_pdd_Read

The adi_pdd_Read function is called by the Device Manager in response to
the application calling the adi_dev_Read function. Its purpose is to fill
buffers with inbound data that is received from the device. With all API
functions, if error checking is enabled the routine should validate the
physical driver handle is upon entry into the function.

For detailed reference information, see “adi_pdd_Read” on
page 7-62.

For devices that are supported by peripheral DMA, the Device Manager
manages all buffer queueing and reception. As a result, if the device is sup-
ported by peripheral DMA, the adi_pdd_Read function is never called by
the Device Manager and no functionality need be provided by this rou-
tine. This greatly simplifies device drivers for devices that are supported by
processor DMA. Physical drivers that are supported by peripheral DMA
still need to provide this function but should simply return ADI_DEV_
RESULT_NOT_SUPPORTED as this routine should never get called.

For devices that are not supported by peripheral DMA, the adi_pdd_Read
function is passed one or more buffers that the application has provided
for inbound data reception. The physical driver can choose to process the
buffers immediately, or provide the logic and functionality to queue or
somehow stage these buffers for use at some later point in time. However,
the physical driver is required to process the buffers in the order in which
they were received.

For some devices, it may not be possible or practical to completely fill a
buffer with data. For example, consider an Ethernet driver. The Ethernet
driver typically receives packets that vary in length. The application may
know what the maximum size Ethernet packet is and provide the driver
with buffers sized to the maximum packet size. The driver may then
receive a packet from the network that is smaller than the maximum
packet size. It would be impractical for the physical driver to wait until
additional packets were received and completely fill the buffer before pro-

Device Drivers and System Services Manual for Blackfin Processors 7-45

Device Driver Manager

cessing. So, it is the physical driver’s option to decide when to consider a
buffer fully processed. Each buffer has a processed flag and processed size
flag that the physical driver should set, based on when it considers a buffer
processed and how much valid data the buffer contains.

Also, any buffer can be flagged by the application for notification when
the buffer has completed processing. If a buffer is not flagged for a call-
back, the physical driver should not notify the Device Manager when the
buffer has been processed. If, however, the buffer is flagged for a callback
(once the buffer has been processed), the physical driver is obligated to set
the processed flag and processed size field in the buffer, and notify the
Device Manager via the Device Manager’s callback function that was
passed to the physical driver as a parameter in the adi_pdd_Open function
call, that the buffer has completed processing.

adi_pdd_Write

The adi_pdd_Write function is called by the Device Manager in response
to the application calling the adi_dev_Write function. Its purpose is to
transmit the data within the buffers out through the device. For all API
functions, if error checking is enabled, the routine validates the physical
driver handle upon entry into the function.

For detailed reference information, see “adi_pdd_Write” on
page 7-63.

As in the case for adi_pdd_Read, for devices that are supported by periph-
eral DMA, the Device Manager manages all buffer queueing and
transmission. As a result, if the device is supported by peripheral DMA,
the adi_pdd_Write function is never called by the Device Manager and no
functionality need be provided by this routine. This greatly simplifies
device drivers for devices that are supported by processor DMA. Physical
drivers that are supported by peripheral DMA still need to provide this
function but should simply return ADI_DEV_NOT_SUPPORTED as this routine
should never get called.

Physical Driver Design

7-46 Device Drivers and System Services Manual for Blackfin Processors

For devices that are not supported by peripheral DMA, the adi_pdd_Write
function is passed one or more buffers that the application has provided
for transmission out through the device. The physical driver can choose to
immediately process the buffers, or provide the logic and functionality to
queue or somehow stage these buffers for transmission at some later point
in time. The physical driver is required, however, to process the buffers in
the order in which they were received.

Each buffer has a processed flag and processed size flag that the physical
driver should set based on when it considers a buffer processed and how
much data was transmitted out through the device. Unlike in the adi_
pdd_Read case, it is expected that the entire contents of the buffer will be
transmitted.

Also, any buffer can be flagged by the application for notification when
the buffer has completed processing. If a buffer is not flagged for a call-
back, the physical driver should not notify the Device Manager when the
buffer has been processed. However, if the buffer is flagged for a callback,
once the buffer has been processed the physical driver is obligated to set
the processed flag and processed size field in the buffer and notify the
Device Manager via the Device Manager’s callback function that was
passed to the physical driver as a parameter in the adi_pdd_Open function
call, that the buffer has completed processing.

adi_pdd_Close

The adi_pdd_Close function is called by the Device Manager in response
to the application calling the adi_dev_Close function. Its purpose is to
gracefully shutdown and idle the device. For all API functions, if error
checking is enabled, the routine should validate the physical driver handle
is upon entry into the function.

For detailed reference information, see “adi_pdd_Close” on
page 7-58.

Device Drivers and System Services Manual for Blackfin Processors 7-47

Device Driver Manager

After validating the driver handle, the adi_pdd_Close function should ter-
minate all data transmission and reception if is not already stopped, as it is
possible for the application to call the adi_dev_Close function while data-
flow is enabled.

The function should idle the device and leave the device in a state such
that it can be opened again should the application re-open the device at
some later point in time. All resources that were allocated in support of
the device should be released. For example if an error interrupt was
hooked during the adi_pdd_Open function, it should be released as part of
the adi_pdd_Close function.

Device Manager API Reference
This section describes the API of the Device Manager. The Device Man-
ager API is defined in the adi_dev.h file.

Notation Conventions
The reference pages for the API functions use the following format:

Name and purpose of the function

Description – Function specification

Prototype – Required header file and functional prototype

Arguments – Description of function arguments

Return Value – Description of function return values

Device Manager API Reference

7-48 Device Drivers and System Services Manual for Blackfin Processors

adi_dev_Close

Description

This function closes a device. Dataflow is stopped if it has not already
been stopped and the device is put back into an idled state. After calling
adi_dev_Close, the only way to access the device again is to first open it
with the adi_dev_Open function call.

Prototype

ADI_DEV_RESULT adi_dev_Close(

 ADI_DEV_DEVICE_HANDLE DeviceHandle);

Arguments

Return Value

DeviceHandle This is the handle used to identify the device.

ADI_DEV_RESULT_SUCCESS The device closed successfully.

ADI_DEV_RESULT_BAD_DEVICE_HANDLE The device handle does not identify a valid device.

ADI_DEV_RESULT_DMA_ERROR An error occurred while closing down DMA for the
device.

xxx This is a device-specific return code.

Device Drivers and System Services Manual for Blackfin Processors 7-49

Device Driver Manager

adi_dev_Control

Description

This function sets or detects a configuration parameter for a device.

Prototype

ADI_DMA_RESULT adi_dev_Control(
 ADI_DEV_DEVICE_HANDLE DeviceHandle,
 u32 Command,
 void *pArg
);

Arguments

Return Value

DeviceHandle This is the handle used to identify the device.

Command This is the command identifier.

pArg This is the address of command specific parameter.

ADI_DEV_RESULT_SUCCESS The function completed successfully.

ADI_DEV_RESULT_BAD_DEVICE_HANDLE The device handle does not identify a valid device.

ADI_DEV_RESULT_DMA_ERROR An error was reported while configuring the DMA
Manager.

ADI_DEV_RESULT_NOT_SUPPORTED The command is not supported.

xxx This is a device-specific return code.

Device Manager API Reference

7-50 Device Drivers and System Services Manual for Blackfin Processors

adi_dev_Init

Description

This function creates a Device Manager and initializes memory for the
Device Manager. This function is typically called at initialization time.

Prototype

ADI_DEV_RESULT adi_dev_Init(
 void *pMemory,
 size_t MemorySize,
 u32 *pMaxDevices,
 ADI_DEV_MANAGER_HANDLE *pManagerHandle,
 void *pEnterCriticalParam
);

Arguments

pMemory This is the pointer to an area of static memory to be used by the
Device Manager.

MemorySize This is the size in bytes of memory being supplied for the
Device Manager.

*pMaxDevices On return, this argument contains the number of
simultaneously open devices that the Device Manager can
support given the memory supplied.

*pManagerHandle This is the pointer to memory location where the handle to the
Device Manager will be stored.

*pEnterCriticalParam This is the parameter that is to be passed to the function that
protects critical areas of code.

Device Drivers and System Services Manual for Blackfin Processors 7-51

Device Driver Manager

Return Value

Return values include:

ADI_DEV_RESULT_SUCCESS Device Manager was successfully initialized.

ADI_DEV_RESULT_NO_MEMORY Insufficient memory has been supplied to Device Manager.

Device Manager API Reference

7-52 Device Drivers and System Services Manual for Blackfin Processors

adi_dev_Open

Description

This function opens a device for use. Internal data structures are initial-
ized, preliminary device control is established, and the device is reset and
prepared for use.

Prototype

ADI_DEV_RESULT adi_dev_Open(
 ADI_DEV_MANAGER_HANDLE ManagerHandle,
 ADI_DEV_PDD_ENTRY_POINT *pEntryPoint,
 u32 DeviceNumber,
 void *ClientHandle,
 ADI_DEV_DEVICE_HANDLE *pDeviceHandle,
 ADI_DEV_DIRECTION Direction,
 ADI_DMA_MANAGER_HANDLE DMAHandle,
 ADI_DCB_HANDLE DCBHandle,
 ADI_DCB_CALLBACK_FN ClientCallback
);

Arguments

ManagerHandle This is the handle to the Device Manager that controls the
device.

*pEntryPoint This is the address of the physical driver’s entry point

DeviceNumber This is the number identifying which device is to be opened.
Device numbers begin with zero. For example, if there are
four serial ports, they are numbered 0 through 3.

*ClientHandle This is an identifier defined by the application. The Device
Manager passes this value back to the client as an
argument in the callback function.

Device Drivers and System Services Manual for Blackfin Processors 7-53

Device Driver Manager

Return Value

*pDeviceHandle This is the pointer to an application provided location where
the Device Manager stores an identifier defined by the
Device Manager. All subsequent communication
initiated by the client to the Device Manager for this device
includes this handle.

Direction This is the data direction for the device, inbound, outbound
or bidirectional.

DMAHandle This is the handle to the DMA Manager service that is used
for this device (can be NULL if DMA is not used.)

DCBHandle This is the handle to the Deferred Callback Service that is
used for this device. If NULL, all callbacks will be live and
not-deferred.

ClientCallback This is the address of the client’s callback function.

ADI_DEV_RESULT_SUCCESS Device was opened successfully.

ADI_DEV_RESULT_BAD_MANAGER_HANDLE The Device Manager handle does not point to a Device
Manager.

ADI_DEV_RESULT_NO_MEMORY Insufficient memory is available to open the device.

ADI_DEV_RESULT_DEVICE_IN_USE The device is already in use.

xxx This is a device-specific return code.

Device Manager API Reference

7-54 Device Drivers and System Services Manual for Blackfin Processors

adi_dev_Read

Description

This function reads data from a device or queues reception buffers to a
device.

Prototype

ADI_DEV_RESULT adi_dev_Read(
 ADI_DEV_DEVICE_HANDLE DeviceHandle,
 ADI_DEV_BUFFER_TYPE BufferType,
 ADI_DEV_BUFFER *pBuffer
);

Arguments

Return Value

DeviceHandle This is the handle used to identify the device.

BufferType This argument indicates the type of buffer: one-
dimensional, two-dimensional or circular.

*pBuffer This is the address of the buffer or first buffer in a chain
of buffers.

ADI_DEV_RESULT_SUCCESS The function completed successfully.

ADI_DEV_RESULT_BAD_DEVICE_HANDLE The device handle does not identify a valid device.

ADI_DEV_RESULT_DMA_ERROR An error was reported while configuring the DMA
Manager.

ADI_DEV_RESULT_DATAFLOW_UNDE-
FINED

The dataflow method has not yet been set.

xxx This is a device-specific return code.

Device Drivers and System Services Manual for Blackfin Processors 7-55

Device Driver Manager

adi_dev_Terminate

Description

This function frees up all memory used by the Device Manager, stops data
flow, closes all open device drivers, and terminates the Device Manager.

Prototype

ADI_DEV_RESULT adi_dev_Terminate(
 ADI_DEV_MANAGER_HANDLE ManagerHandle
);

Arguments

Return Value

This function returns ADI_DEV_RESULT_SUCCESS if successful. Any other
value indicates an error.

ManagerHandle This is the handle to the Device Manager.

Device Manager API Reference

7-56 Device Drivers and System Services Manual for Blackfin Processors

adi_dev_Write

Description

This function writes data to a device or queues transmission buffers to a
device.

Prototype

ADI_DEV_RESULT adi_dev_Write(
 ADI_DEV_DEVICE_HANDLE DeviceHandle,
 ADI_DEV_BUFFER_TYPE BufferType,
 ADI_DEV_BUFFER *pBuffer
);

Arguments

Return Value

DeviceHandle This is the handle used to identify the device.

BufferType This arguments identifies the type of buffer:
one-dimensional, two-dimensional or circular.

*pBuffer This is the address of the buffer or first buffer in a chain
of buffers.

ADI_DEV_RESULT_SUCCESS The function completed successfully.

ADI_DEV_RESULT_BAD_DEVICE_HANDLE The device handle does not identify a valid device.

ADI_DEV_RESULT_DMA_ERROR An error was reported while configuring the DMA
Manager.

ADI_DEV_RESULT_DATAFLOW_UNDE-
FINED

The dataflow method has not yet been set.

xxx This is a device-specific return code.

Device Drivers and System Services Manual for Blackfin Processors 7-57

Device Driver Manager

Physical Driver API Reference
This section describes the API used between the Device Manager and each
physical driver. The Physical Driver API is defined in the adi_dev.h file.

Notation Conventions
The reference pages for the API functions use the following format:

Name and purpose of the function

Description – Function specification

Prototype – Required header file and functional prototype

Arguments – Description of function arguments

Return Value – Description of function return values

Physical Driver API Reference

7-58 Device Drivers and System Services Manual for Blackfin Processors

adi_pdd_Close

Description

This function closes a device. Dataflow is stopped if it has not already
been stopped and the device is put back into an idle state.

Prototype

ADI_DEV_RESULT adi_pdd_Close(

 ADI_PDD_DEVICE_HANDLE PDDHandle);

Arguments

Return Value

PDDHandle This is the handle used to identify the device.

ADI_DEV_RESULT_SUCCESS The device closed successfully.

xxx This is device-specific code.

Device Drivers and System Services Manual for Blackfin Processors 7-59

Device Driver Manager

adi_pdd_Control

Description

This function sets or detects a configuration parameter for a device.

Prototype

ADI_DMA_RESULT adi_pdd_Control(
 ADI_DEV_PDD_HANDLE PDDHandle,
 u32 Command,
 void *pArg
);

Arguments

Return Value

PDDHandle This is the handle used to identify the device.

Command This is the command identifier.

pArg This is the address of command-specific parameter.

ADI_DEV_RESULT_SUCCESS The function completed successfully.

ADI_DEV_RESULT_NOT_SUPPORTED This command is not supported.

xxx This is device-specific return code.

Physical Driver API Reference

7-60 Device Drivers and System Services Manual for Blackfin Processors

adi_pdd_Open

Description

This function opens a physical device for use. Internal data structures are
initialized, preliminary device control is established and the device is reset
and prepared for use.

Prototype

ADI_DEV_RESULT adi_ppd_Open(
 ADI_DEV_MANAGER_HANDLE ManagerHandle,
 u32 DeviceNumber,

 ADI_DEV_DEVICE_HANDLE DeviceHandle,
 ADI_DEV_PDD_HANDLE *pPDDHandle,
 ADI_DEV_DIRECTION Direction,
 void *pEnterCriticalParam,

 ADI_DMA_MANAGER_HANDLE DMAHandle,
 ADI_DCB_HANDLE DCBHandle,
 ADI_DCB_CALLBACK_FN DMCallback
);

Arguments

ManagerHandle This is the handle to the Device Manager that is con-
trolling the physical driver.

DeviceNumber This is the number identifying which device is to be
opened. Device numbers begin with zero. For example,
if there are four serial ports, they are numbered 0
through 3.

DeviceHandle This is the Device Manager-supplied parameter that
uniquely identifies the device to the Device Manager.

*pPDDHandle This is the pointer to a location where the physical
driver stores a handle that uniquely identifies the device
to the physical driver.

Direction This is the data direction for the device, inbound,
outbound or bidirectional

Device Drivers and System Services Manual for Blackfin Processors 7-61

Device Driver Manager

Return Value

*pEnterCriticalParam This is the parameter that is to be passed to the
function that protects critical areas of code.

DMAHandle This is the handle to the DMA Manager service that is
used for this device (can be NULL if DMA is not used).

DCBHandle This is the handle to the Deferred Callback Service that
will be used for this device. If NULL, all callbacks will
be live and not-deferred.

DMCallback This is the address of the Device Manager’s callback
function.

ADI_DEV_RESULT_SUCCESS The device opened successfully.

ADI_DEV_RESULT_DEVICE_IN_USE The Device Manager handle does not point to a Device
Manager.

xxx This is the device-specific return code.

Physical Driver API Reference

7-62 Device Drivers and System Services Manual for Blackfin Processors

adi_pdd_Read

Description

This function provides buffers to a device for reception of inbound data.
This function is never called for devices that are supported by peripheral
DMA.s

Prototype

ADI_DEV_RESULT adi_pdd_Read(
 ADI_DEV_PDD_HANDLE PDDHandle,
 ADI_DEV_BUFFER_TYPE BufferType,
 ADI_DEV_BUFFER *pBuffer
);

Arguments

Return Value

PDDHandle This is the handle used to identify the device.

BufferType This identifies the type of buffer: one-dimensional,
two-dimensional or circular.

*pBuffer This is the address of the buffer or first buffer in a chain
of buffers

ADI_DEV_RESULT_SUCCESS The function completed successfully.

ADI_DEV_RESULT_BAD_PDD_HANDLE The PDD handle does not identify a valid device.

xxx This is the device-specific return code.

Device Drivers and System Services Manual for Blackfin Processors 7-63

Device Driver Manager

adi_pdd_Write

Description

This function provides buffers to a device for transmission of outbound
data. This function is never called for devices that are supported by
peripheral DMA.

Prototype

ADI_DEV_RESULT adi_pdd_Write(
 ADI_DEV_PDD_HANDLE PDDHandle,
 ADI_DEV_BUFFER_TYPE BufferType,
 ADI_DEV_BUFFER *pBuffer
);

Arguments

Return Value

PDDHandle This is the handle used to identify the device.

BufferType This argument identifies the type of buffer: one-
dimensional, two-dimensional or circular.

*pBuffer This is the address of the buffer or first buffer in a chain
of buffers.

ADI_DEV_RESULT_SUCCESS The function completed successfully.

ADI_DEV_RESULT_BAD_PDD_HANDLE The PDD handle does not identify a valid device.

xxx This is device-specific return code.

Examples

7-64 Device Drivers and System Services Manual for Blackfin Processors

Examples
Examples showing how to use the Device Driver Model as well as Analog
Devices provided device drivers are provided with the Device Driver and
System Services distribution. For examples of applications using the device
drivers, see the Blackfin/EZ-Kits directory. Source code for all Analog
Devices provided device drivers is located in the Black-
fin/Lib/Src/Driver directory.

Device Drivers and System Services Manual for Blackfin Processors I-1

I INDEX

A
accessing the device driver API, 1-20
ADI_DCB_CALLBACK_FN data type, 5-24
ADI_DCB_CMD_END command, 5-26
ADI_DCB_CMD_FLUSH_QUEUE

command, 5-26
ADI_DCB_CMD_PAIR command, 5-26
ADI_DCB_CMD_TABLE command, 5-26
ADI_DCB_COMMAND macro, 5-26
ADI_DCB_COMMAND_PAIR data type,

5-25, 5-26
adi_dcb_Control function, 5-26
adi_dcb_Forward function, 5-8
adi_dcb_Init function, 5-16
adi_dcb_Open function, 5-18
adi_dcb_Post function, 5-20
ADI_DCB_RESULT data type, 5-27
adi_dcv_Init function, 7-50
ADI_DEV_1D_BUFFER data type, 7-7, 7-21
ADI_DEV_2D_BUFFER data type, 7-21
ADI_DEV_2D_BUFFER two- dimensional

buffer, 7-7
ADI_DEV_BASE_MEMORY, 7-8
ADI_DEV_BASE_MEMORY macro, 7-19
ADI_DEV_BUFFER data type, 7-7, 7-22
adi_dev.c file, 7-23
ADI_DEV_CIRCULAR_BUFFER data type,

7-7, 7-21
adi_dev_Close function, 7-48
adi_dev_Close() function, 1-16, 7-16, 7-25
ADI_DEV_CMD_GET_2D_SUPPORT

command, 7-28

ADI_DEV_CMD_GET_INBOUND_DMA_
PMAP_ID command, 7-43

ADI_DEV_CMD_GET_OUTBOUND_
DMA_PMAP_ID command, 7-43

ADI_DEV_CMD_GET_PERIPHERAL_
DMA_SUPPORT command, 7-43

ADI_DEV_CMD_PDD_START, 7-38
defined command ID, 7-38
enumeration value, 7-20

ADI_DEV_CMD_SET_DATAFLOW
command, 7-14, 7-29, 7-34, 7-43

ADI_DEV_CMD_SET_DATAFLOW_
METHOD command, 7-11, 7-28

ADI_DEV_CMD_SET_STREAMING
command, 7-29

ADI_DEV_CMD_SET_SYNCHRONOUS
command, 7-28

adi_dev_Control() function, 1-16, 7-10, 7-11,
7-27, 7-49

ADI_DEV_DEBUG macro, 7-41
ADI_DEV_DEVICE macro, 7-23, 7-25
ADI_DEV_DEVICE_MEMORY macro, 7-8,

7-19
ADI_DEV_EVENT_BUFFER_PROCESSED

event, 7-31
ADI_DEV_EVENT_PDD_START

enumeration value, 7-21
ADI_DEV_EVENT_SUBBUFFER_

PROCESSED event, 7-31
adi_dev.h file, 1-21, 7-18, 7-38, 7-47, 7-57
adi_dev.h include file, 7-38
adi_dev_Init() function, 1-19, 7-8, 7-24

INDEX

I-2 Device Drivers and System Services Manual for Blackfin Processors

ADI_DEV_MANAGER macro, 7-23
ADI_DEV_MODE_CHAINED_

LOOPBACK dataflow method, 7-29
ADI_DEV_MODE_CIRCULAR

dataflow method, 7-32
ADI_DEV_NOT_SUPPORTED return

code, 7-45
adi_dev_Open() function, 1-16, 7-9, 7-16,

7-24, 7-52
ADI_DEV_PDD_ENTRY_POINT data

type, 7-22
entry point declaration, 7-40

ADI_DEV_PDD_ENTRY_POINT
structure, 7-37

ADI_DEV_PDD_HANDLE value, 7-42
adi_dev_Read() function, 1-16, 1-17, 7-7,

7-26, 7-54
ADI_DEV_RESULT_NOT_

SUPPORTED return code, 7-43,
7-44

ADI_DEV_RESULT_PDD_START
value, 7-21, 7-39

ADI_DEV_RESULT_SUCCESS return
code, 7-39, 7-42

adi_dev_Terminate() function, 1-19, 7-9,
7-55

adi_dev_Write() function, 1-16, 1-17, 7-7,
7-27, 7-56

adi_dma_Buffer function, 6-34
adi_dma_Circular function, 7-26
adi_dma_Close function, 6-39
ADI_DMA_CONFIG_REG_WORD

data type, 6-56
adi_dma_Control function, 6-36
ADI_DMA_CREATEDESCRIPTOR_

ARRAY structure, 6-56
ADI_DMA_CREATEDESCRIPTOR_

LARGE structure, 6-57
ADI_DMA_CREATEDESCRIPTOR_

SMALL structure, 6-57

ADI_DMA_DATA_MODE
enumeration, 6-58

ADI_DMA_DI_EN value, 6-61
ADI_DMA_DI_SEL value, 6-61
ADI_DMA_DMA2D value, 6-61
ADI_DMA_EN value, 6-61
ADI_DMA_EVENT enumeration, 6-58
adi_dma_GetMapping function, 6-40
adi_dma.h header file, 6-53, 6-55
adi_dma_InitMgr function, 6-41
adi_dma_memcpy2D function, 6-43
adi_dma_MemoryClose, 6-42
adi_dma_Open function, 6-49
adi_dma_Queue function, 7-26
ADI_DMA_RESULT enumeration, 6-59
adi_dma_SetMapping function, 6-52
ADI_DMA_WDSIZE value, 6-61
ADI_DMA_WNR value, 6-62
adi_ebiu_AdjustSDRAM function, 4-7
adi_ebiu_Control function, 4-8
adi_ebiu_Init function, 4-2, 4-12
ADI_EBIU_RESULT enumeration, 3-42,

4-19
ADI_EBIU_SDRAM_BANK_COL_

WIDTH enumeration, 4-29
ADI_EBIU_SDRAM_BANK_SIZE

enumeration, 4-29
ADI_EBIU_SDRAM_BANK_VALUE

structure, 4-21
ADI_EBIU_SDRAM_CDDBG

enumeration, 4-35
ADI_EBIU_SDRAM_EBUFE

enumeration, 4-33
ADI_EBIU_SDRAM_EMREN

enumeration, 4-31
ADI_EBIU_SDRAM_ENABLE

enumeration, 4-28
ADI_EBIU_SDRAM_FBBRW

enumeration, 4-34

Device Drivers and System Services Manual for Blackfin Processors I-3

INDEX

ADI_EBIU_SDRAM_PASR enumeration,
4-32

ADI_EBIU_SDRAM_PSM enumeration,
4-34

ADI_EBIU_SDRAM_PUPSD
enumeration, 4-33

ADI_EBIU_SDRAM_SRFS enumeration,
4-33

ADI_EBIU_SDRAM_TCSR
enumeration, 4-32

ADI_EBIU_TIME, 4-22
adi_int_CECHook function, 2-20
adi_int_CECInit function, 2-18
adi_int_CECUnhook function, 2-22
adi_int_ClearIMASKBits, 2-15
adi_int_EnterCriticalRegion(), 2-12
adi_int_ExitCriticalRegion(), 2-12
ADI_INT_HANDLER macro, 2-9
adi_int_Init() function, 2-4
adi_int_ProtectCriticalRegion(), 7-9
adi_int_SetIMASKBits(), 2-15
adi_int_SICDisable function, 2-29
adi_int_SICEnable function, 2-30
adi_int_SICWakeup function, 2-36
adi_int_Terminate, 2-19
adi_pdd_Close function, 7-46, 7-58
adi_pdd_Control function, 7-25, 7-27,

7-28, 7-42, 7-59
adi_pdd_Open function, 7-31, 7-41, 7-60
adi_pdd_Read function, 7-44, 7-62
adi_pdd_Write function, 7-45, 7-63
adi_ppi.c file, 7-38
adi_ppi.h file, 1-21, 7-38
adi_pwr_AdjustFreq function, 3-7
adi_pwr_AdjustSpeed, 3-7
ADI_PWR_CLKIN_EZKIT_BF533

macro, 3-52
ADI_PWR_CLKIN_EZKIT_BF537

macro, 3-52
ADI_PWR_COMMAND function, 3-31

ADI_PWR_COMMAND_PAIR data
type, 3-35

adi_pwr_Control function, 3-9
ADI_PWR_CSEL data type, 3-35
ADI_PWR_DF data type, 3-36
ADI_PWR_EZKIT_BF533_600MHZ,

3-37
ADI_PWR_EZKIT function, 3-37
adi_pwr_GetFreq function, 3-12
adi_pwr_GetPowerMode function, 3-13
adi_pwr_GetPowerSaving function, 3-13
adi_pwr_Init function, 3-14
ADI_PWR_INPUT_DELAY data type,

3-37
adi_pwr_LoadConfig function, 3-18
ADI_PWR_MILLIVOLTS macro, 3-51
ADI_PWR_MODE data type, 3-38
ADI_PWR_OUTPUT_DELAY data type,

3-37
ADI_PWR_PACKAGE_KIND data type,

3-39
ADI_PWR_PACKAGE_PBGA macro,

3-52
ADI_PWR_PROC_BF531SBBC400

macro, 3-52
ADI_PWR_PROC_BF531SBBZ400

macro, 3-52
ADI_PWR_PROC_BF531SBST400

macro, 3-52
ADI_PWR_PROC_BF531SBSTZ400

macro, 3-52
ADI_PWR_PROC_BF532SBBC400

macro, 3-52
ADI_PWR_PROC_BF532SBBZ400

macro, 3-52
ADI_PWR_PROC_BF532SBST400

macro, 3-52
ADI_PWR_PROC_BF533SBBZ500

macro, 3-52

INDEX

I-4 Device Drivers and System Services Manual for Blackfin Processors

ADI_PWR_PROC_BF533SKBCZ600
macro, 3-52

ADI_PWR_PROC_BF534SBBC1Z400
macro, 3-53

ADI_PWR_PROC_BF534SBBC1Z500
macro, 3-53

ADI_PWR_PROC_BF534SBBC2Z400
macro, 3-53

ADI_PWR_PROC_BF534SBBC2Z500
macro, 3-53

ADI_PWR_PROC_BF536SBBC1Z300
macro, 3-53

ADI_PWR_PROC_BF536SBBC1Z400
macro, 3-53

ADI_PWR_PROC_BF536SBBC2Z300
macro, 3-53

ADI_PWR_PROC_BF536SBBC2Z400
macro, 3-53

ADI_PWR_PROC_BF537SBBC1Z500
macro, 3-53

ADI_PWR_PROC_BF537SBBC2Z500
macro, 3-53

ADI_PWR_PROC_BF537SKBC1Z600
macro, 3-52

ADI_PWR_PROC_BF537SKBC600
macro, 3-52

ADI_PWR_PROC_KIND data type, 3-41
adi_pwr_Reset function, 3-19
adi_pwr_SaveConfig function, 3-20
adi_pwr_SetFreq, 3-22
adi_pwr_SetFreq function, 3-21
adi_pwr_SetMaxFreqForVolt function,

3-23
adi_pwr_SetPowerMode function, 3-24
adi_pwr_SetVoltageRegulator function,

3-26
ADI_PWR_SIZEOF_CONFIG macro,

3-11
ADI_PWR_SSEL data type, 3-44

ADI_PWR_SUCCESS return code, 3-3
ADI_PWR_VDDEXT data type, 3-45
ADI_PWR_VDEXT_EZKIT_BF533

macro, 3-52
ADI_PWR_VDEXT_EZKIT_BF537

macro, 3-52
ADI_PWR_VLEV data type, 3-46
ADI_PWR_VLEV_DEFAULT macro,

3-51
ADI_PWR_VLEV_MAX macro, 3-51
ADI_PWR_VLEV_MIN macro, 3-51
ADI_PWR_VOLTS macro, 3-51
ADI_PWR_VR_CANWE function, 3-47
ADI_PWR_VR_CKELOW function,

3-48
ADI_PWR_VR_CLKBUFOE function,

3-49
ADI_PWR_VR_FREQ data type, 3-50
ADI_PWR_VR_FREQ_DEFAULT

macro, 3-51
ADI_PWR_VR_FREQ_MAX macro,

3-51
ADI_PWR_VR_FREQ_MIN macro,

3-51
ADI_PWR_VR_GAIN data type, 3-50
ADI_PWR_VR_GAIN_DEFAULT

macro, 3-51
ADI_PWR_VR_GAIN_MAX macro,

3-51
ADI_PWR_VR_GAIN_MIN macro, 3-51
ADI_PWR_VR_WAKE data type, 3-51
adi_xxx_Terminate(), 1-9
AdjustRefreshRate flag, 4-13
API

for device drivers, 1-16
Application Programming Interface (API)

See API
assigning one-shot buffers, 6-34
auto-refresh command, 4-12

Device Drivers and System Services Manual for Blackfin Processors I-5

INDEX

B
bank activate command, 4-12
buffer

assigning to DMA channel, 6-34
processed flag, 7-45
processed size flag, 7-45
queueing and reception, 7-44

buffers
for devices, 7-14

C
callback

events, 7-21
function, 7-21

callback function, 5-24, 7-6, 7-16
chained buffers, 7-12
chained buffers with loopback, 7-13
chained dataflow method, 7-12
circular buffer, 6-34, 7-7, 7-12

callback options, 7-21
circular dataflow method, 7-11
circular transfers, 6-14
ClientArg parameter, 2-20
ClientCallback parameter, 6-50, 7-10
ClientHandle parameter, 7-10
CLKIN input clock frequency, 3-24
codecs, 7-1
code generation toolchain, 7-5
command IDs, 7-20
Controller Area Network (CAN) interface,

3-47
core clock, 3-2

divider ratio, 3-7
core processor

waking up, 2-36
core voltage, 3-14
critical reqion parameter, 7-9
C switch statement, 7-16, 7-27

D
data buffers

used with device drivers, 7-21
dataflow

enumerations, 7-20
methods, 7-11
starting, 7-14

DCBHandle parameter, 7-10
DCB manager

API functions, 5-10
executing function calls, 5-2
macros, 5-24
public data types, 5-24

DCB queue server
opening, 5-18

debug information, 1-12
Deferred Callback Manager (DCB), 5-1
descriptor

array element, 6-56
queueing to DMA channel, 6-51

descriptor chains
queueing to DMA channel, 6-51

device
configuring, 7-10
enabling/disabling dataflow through,

7-10
opening, 7-9
opening for use, 7-41
setting configuration parameter, 7-59
shutdown, 7-46

device driver
architecture, 1-17
directory and file structure, 1-20

device driver API
accessing, 1-20

device driver library
linking, 1-22
rebuilding, 1-23

device driver model, 7-1, 7-3

INDEX

I-6 Device Drivers and System Services Manual for Blackfin Processors

device drivers
overview, 1-15

Device Manager
API, 7-6, 7-18
API calls, 7-22
API functional description, 7-24
code, 7-23
controlling physical device drivers, 7-35
initializing, 7-8
supporting clients, 7-3
synchronous mode, 7-28

device manager
initialization, 1-19

DevNumber parameter, 7-9
DMACallback function, 7-31, 7-32
DMA controller

identifying, 6-40
DMA Manager, 6-1
DMA peripheral map (PMAP) ID, 7-43
dmaQueue function, 6-51
DMAx_CONFIG register

field values, 6-61
driver

data buffers, 7-21
entry point, 7-40
stackable, 7-17

DSP
run-time library format, 5-24, 6-32

dynamic power management, 3-2
Dynamic Power Management registers, 3-9

configuring, 3-9

E
EBIU module, 4-1

API functions, 4-6
enumerations, 4-18
initialization values, 4-12
initializing, 4-12
public data types, 4-18
setting control values, 4-24

EBIU_SDBCTL register
setting, 4-12

EBIU_SDGCTL register, 4-7
setting, 4-12

EBIU SDRAM registers
configuring, 4-8

EBIU_SDRRC register, 4-7, 4-13
EBIU service initialization, 1-8
entry point

address, 7-40
into physical driver, 7-22

event
IDs, 7-39
types, 6-58

external
clock oscillator frequency, 3-14
voltage, 3-14, 3-45

External Bus Interface Unit Module See
EBIU

H
handle types, 7-20
hardware reset

PLL controller, 3-19
hConfig argument, 3-20
heat dissipation, 3-39

I
InitialDeviceSettings data tem, 7-23
initialization function, 1-19
initialization functions, 1-7
initialization sequence, 1-8
initializing the device manager, 1-19
Integrity, 5-2
interrupt

raised on DMA transfer, 6-2

Device Drivers and System Services Manual for Blackfin Processors I-7

INDEX

interrupt handler, 2-9
C-callable subroutines, 2-8
chain, 2-20
primary, 2-20
secondary, 2-20
unhooking for given IVG, 2-22

Interrupt Manager
API functions, 2-17
hooking up particular interrupt handler,

2-20
initializing memory for, 2-18
initializing tables and vectors, 2-18

Interrupt Manager controls PLL, 1-8
Interrupt Manager initialization, 1-8
interrupt nesting

disabled, 2-20
enabled, 2-20

L
large descriptor, 6-57
library

format for DSP run-time, 5-24, 6-32
linking to the System Services library, 1-12
load mode register command, 4-34
low-power dissipation, 3-36

M
macros

DCB manager, 5-24
Device Manager, 7-19
Power Management module, 3-51

memory block
initializing, 6-41

memory usage macros
Device Manager, 7-19

N
NestingFlag parameter, 2-20

O
one-shot buffers, 6-34
operating environment, 1-12

P
Parallel Peripheral Interface (PPI), 1-21,

7-1
pBuffer parameter, 7-26
PDDCallback function, 7-31
pEntryPoint parameter, 7-9
physical device driver, 7-35

API description, 7-37
source code, 7-40

physical device drivers, 7-4
custom-defined error codes, 7-39

physical driver
entry point into, 7-22
extensions to command IDs, 7-38
handles, 7-41

PLL
controlled by Interrupt Manager, 1-8

PLL controller
reset, 3-19
resetting, 3-18

PLL Control register
DF bit, 3-36

PLL control register
input delay bit, 3-37
output delay bit, 3-37

PLL_DIV register, 3-7
setting core clock divider bit field, 3-35
setting system clock divider bit field,

3-44
PLL input divider, 3-21
PM macros, 3-51
PM module

API functions, 3-6

INDEX

I-8 Device Drivers and System Services Manual for Blackfin Processors

Power Management module
enabling, 4-2
enumerations, 3-30
initialization values, 3-14
initializing, 3-14
macros, 3-51
public data types, 3-30
service initialization, 1-8

power mode
current, 3-13
defining, 3-38

power modes, 3-24
power saving value, 3-13
PPDCallback function, 7-39
PPIEntryPoint variable, 7-40
precharge all command, 4-34
precharge command, 4-12
PrepareBufferList static function, 7-26,

7-32
configuring DMA Configuration

Control register, 7-32
processor power mode

setting, 3-24, 3-38
processor variants, 1-11

R
real-time operating system (RTOS), 5-2,

7-4
rebuilding libraries using other

development toolsets, 1-14
rebuilding the device driver library, 1-23
return codes, 7-21
revision number references, 1-13
RTI instruction, 2-8
RTOS, 7-4
RTS return function, 2-8

S
SDRAM

configuration, 4-12
low-power (2.5V), 4-31
self-refresh, 4-33
settings, 3-2
using low-power (2.5V), 4-13

SDRAM controller
adjusting, 4-2

self-refresh command, 4-12
services.h file, 1-10, 1-21
SetDataflow, 7-29
SetDataflow static function, 7-34
SIC interrupt wakeup register, 2-11
__SILICON_REVISION__, 1-25
silicon revision macro, 1-25
-si-revision switch, 1-14, 1-25
small descriptor, 6-57
stackable drivers, 7-17
static functions

within the Device Manager, 7-31
switches

-si-revision, 1-25
system clock, 3-2

divider ratio, 3-7
System Interrupt Controller

disabling an interrupt, 2-29
enabling an interrupt, 2-30
wakeup register, 2-36

system interrupt controller functions, 2-9
System Services, 7-4

directory and file structure, 1-10
initializing, 7-16

System Services library
linking to, 1-12
rebuilding, 1-13
special conditions, 1-12

Device Drivers and System Services Manual for Blackfin Processors I-9

INDEX

T
termination function, 1-9, 1-19
ThreadX, 5-2

V
VDDEXT external voltage, 3-45
VDK, 5-2
void * value, 2-21
voltage core oscillator frequencies, 3-12

voltage regulator
acceptable switching frequency values,

3-50
acceptable voltage levels for, 3-46
resetting, 3-18

voltage regulator control register
setting, 3-23
WAKE bit, 3-51

VR_CTL register, 3-23

W
WaitFlag argument, 6-39
write command, 4-12

INDEX

I-10 Device Drivers and System Services Manual for Blackfin Processors

	Preface
	Introduction
	Interrupt Manager
	Power Management Module
	External Bus Interface Unit Module
	Deferred Callback Manager
	DMA Manager
	Device Driver Manager
	Index
	Preface
	Purpose of This Manual
	Intended Audience
	Manual Contents Description
	Technical or Customer Support
	Product Information
	MyAnalog.com
	Processor Product Information
	Related Documents
	Online Technical Documentation
	Accessing Documentation From VisualDSP++
	Accessing Documentation From Windows
	Accessing Documentation From the Web

	Printed Manuals
	VisualDSP++ Documentation Set
	Hardware Tools Manuals
	Processor Manuals
	Data Sheets

	Notation Conventions

	1 Introduction
	System Services Overview
	Application Interface
	Dependencies
	Initialization
	Termination
	System Services Directory and File Structure
	Accessing the System Services API
	Linking in the System Services Library
	Rebuilding the System Services Library

	Examples

	Device Driver Overview
	Application Interface
	Device Driver Architecture
	Interaction with System Services

	Initialization
	Termination
	Device Driver Directory and File Structure
	Accessing the Device Driver API
	Linking in the Device Driver Library
	Rebuilding the Device Driver Library

	Examples

	2 Interrupt Manager
	Introduction
	Initialization
	Termination
	Core Event Controller Functions
	adi_int_CECHook()
	adi_int_CECUnhook()
	Interrupt Handlers

	System Interrupt Controller Functions
	adi_int_SICDisable()
	adi_int_SICEnable()
	adi_int_SICGetIVG()
	adi_int_SICInterruptAsserted()
	adi_int_SICSetIVG()
	adi_int_SICWakeup()

	Protecting Critical Regions
	Modifying IMASK
	Examples
	File Structure
	Interrupt Manager API Reference
	Notation Conventions

	3 Power Management Module
	Introduction
	PM Module Operation - Getting Started
	Power Management API Reference
	Notation Conventions

	Public Data Types and Enumerations
	PM Module Macros

	4 External Bus Interface Unit Module
	Introduction
	Using the EBIU Module
	EBIU API Reference
	Notation Conventions

	Public Data Types and Enumerations
	Setting Control Values in the EBIU Module
	ADI_EBIU_COMMAND
	ADI_EBIU_COMMAND_PAIR
	Command Value Enumerations
	ADI_EBIU_SDRAM_EZKIT
	ADI_EBIU_SDRAM_ENABLE
	ADI_EBIU_SDRAM_BANK_SIZE
	ADI_EBIU_SDRAM_BANK_COL_WIDTH
	ADI_EBIU_SDRAM_MODULE_TYPE
	ADI_EBIU_CMD_SET_SDRAM_SCTLE
	ADI_EBIU_SDRAM_EMREN
	ADI_EBIU_SDRAM_PASR
	ADI_EBIU_SDRAM_TCSR
	ADI_EBIU_SDRAM_SRFS
	ADI_EBIU_SDRAM_EBUFE
	ADI_EBIU_SDRAM_PUPSD
	ADI_EBIU_SDRAM_PSM
	ADI_EBIU_SDRAM_FBBRW
	ADI_EBIU_SDRAM_CDDBG

	5 Deferred Callback Manager
	Introduction
	Using the Deferred Callback Manager
	Interoperability With an RTOS
	adi_dcb_Forward
	adi_dcb_RegisterISR
	Handling Critical Regions within Callbacks

	DCB Manager API Reference
	Notation Conventions

	Public Data Types and Macros

	6 DMA Manager
	Introduction
	Theory of Operation
	Overview
	Initialization
	Termination
	Memory DMA and Peripheral DMA
	Controlling Memory Streams
	Opening Memory Streams
	Memory Transfers
	Closing Memory Streams

	Controlling DMA Channels
	Opening DMA Channels
	Configuring a DMA Channel
	Closing a DMA Channel

	Transfer Completions
	Polling
	Callbacks

	Descriptor Based Submodes
	Loopback Submode
	Streaming Submode

	DMA Channel to Peripheral Mapping
	Sensing a Mapping
	Setting a Mapping

	Interrupts
	Hooking Interrupts
	Unhooking Interrupts

	Two-Dimensional DMA

	DMA Manager API Reference
	Notation Conventions

	Public Data Structures, Enumerations and Macros
	Data Types
	ADI_DMA_CHANNEL_HANDLE
	ADI_DMA_DESCRIPTOR_UNION / ADI_DMA_DESCRIPTOR_HANDLE
	ADI_DMA_STREAM_HANDLE

	Data Structures
	ADI_DMA_2D_TRANSFER
	ADI_DMA_CONFIG_REG
	ADI_DMA_DESCRIPTOR_ARRAY
	ADI_DMA_DESCRIPTOR_LARGE
	ADI_DMA_DESCRIPTOR_SMALL

	General Enumerations
	ADI_DMA_CHANNEL_ID
	ADI_DMA_EVENT
	ADI_DMA_MODE
	ADI_DMA_PMAP
	ADI_DMA_RESULT
	ADI_DMA_STREAM_ID

	ADI_DMA_CONFIG_REG Field Values
	ADI_DMA_DMA2D
	ADI_DMA_DI_EN
	ADI_DMA_DI_SEL
	ADI_DMA_EN
	ADI_DMA_WDSIZE
	ADI_DMA_WNR

	DMA Commands

	7 Device Driver Manager
	Device Driver Model Overview
	Using the Device Manager
	Device Manager Overview
	Theory of Operation
	Data
	Initializing the Device Manager
	Termination
	Opening a Device
	Configuring a Device
	Providing Buffers to a Device
	Closing a Device
	Callbacks
	Initialization Sequence
	Stackable Drivers

	Device Manager Design
	Device Manager API Description
	Memory Usage Macros
	Handles
	Dataflow Enumerations
	Command IDs
	Callback Events
	Return Codes
	Circular Buffer Callback Options
	Buffer Data Types
	Physical Driver Entry Point
	API Function Definitions

	Device Manager Code
	Data Structures
	Static Data
	Static Function Declarations
	API Functional Description
	Static Functions

	Physical Driver Design
	Physical Driver Design Overview
	Physical Device Driver API Description
	Physical Driver Include File (“xxx.h”)
	Extensible Definitions
	ADI_DEV_PDD_ENTRY_POINT

	Physical Driver Source (“xxx.c”)
	adi_pdd_Open
	adi_pdd_Control
	adi_pdd_Read
	adi_pdd_Write
	adi_pdd_Close

	Device Manager API Reference
	Notation Conventions

	Physical Driver API Reference
	Notation Conventions

	Examples

	I Index
	A
	B
	C
	D
	E
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	V
	W

