

Hardware User Manual SBC-i.MX51 V2.x

...maximum performance at minimum space

Contact

Bluetechnix Mechatronische Systeme GmbH

Waidhausenstraße 3/19

A-1140 Vienna

AUSTRIA/EUROPE

office@bluetechnix.at

http://www.bluetechnix.com

Document No.: 100-1440-2.1

Document Revision 3

Date: 2010-12-22

Table of Contents

1	C	Dverview				
	1.1	Fea	Features			
	1.2	Blo	lock Diagram			
	1.3	Sof	tware	7		
2	C	Compoi	nents	8		
	2.1	Inte	egrated Components	8		
	2.2	Ор	tional Components	9		
3	S	Standar	d I/O Connectors	10		
4	E	Extensio	on Connectors	12		
	4.1	GP	IO/Automation Connector (X3)	12		
	4	1.1.1	One-Wire-Interface	13		
	4	1.1.2	Analog-In	13		
	4	1.1.3	I ² C	13		
	4	1.1.4	Keypad	13		
	4	1.1.5	LEDs	13		
	4	1.1.6	PWM	14		
	4	4.1.7	SPI	14		
	4	4.1.8	SSI	14		
	4	1.1.9	UART	14		
4.1.10 Power Supplies		4.1.10	Power Supplies	14		
	4	1.1.11	I/O Power Domains	14		
	4	1.1.12	Pin Description Table	15		
	4.2	Dig	ital Video Connector (X11)	16		
	4	1.2.1	Camera Sensor Interface Port (CSI1)	17		
	4	1.2.2	LCD Port (DISP2)	17		
	4	1.2.3	GPIOs	17		
	4	1.2.4	Power Supplies	18		
	4	1.2.5	Pin Description Table	19		
	4.3	Au	dio Connector (X17)	20		
	4.4	Res	et / Power-On Connector (X16)	21		
	4.5	Pov	wer Supply Connector (X18)	21		
5	C	Operati	ng Conditions	22		
	5.1	Ele	ctrical Characteristics	22		
	5.2	Dig	jital I/O Characteristics	22		
	5.3	An	alog Inputs	22		
	5.4	Во	ot Mode Settings	23		

5	5.5	Battery Operation23			
5	6.6	Backup Battery			
6	Me	echanical specification			
6	5.1	Connector Locations			
6	5.2	Mounting Hole Dimensions			
7	Ar	omalies26			
8	Pro	oduct Changes			
9	Document Revision History				
10) List of Abbreviations				
11	11 List of Figures and Tables				

© Bluetechnix Mechatronische Systeme GmbH 2010

All Rights Reserved.

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights of technical change reserved.

We hereby disclaim any warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Bluetechnix makes and you receive no warranties or conditions, express, implied, statutory or in any communication with you. Bluetechnix specifically disclaims any implied warranty of merchantability or fitness for a particular purpose.

Bluetechnix takes no liability for any damages and errors causing of the usage of this board. The user of this board is responsible by himself for the functionality of his application. He is allowed to use the board only if he has the qualification. More information is found in the General Terms and Conditions (AGB).

Information

For further information on technology, delivery terms and conditions and prices please contact Bluetechnix (http://www.bluetechnix.com).

Warning

Due to technical requirements components may contain dangerous substances.

The Core Modules and development systems contain ESD (electrostatic discharge) sensitive devices. Electro-static charges readily accumulate on the human body and equipment and can discharge without detection. Permanent damage may occur on devices subjected to high-energy discharges. Proper ESD precautions are recommended to avoid performance degradation or loss of functionality. Unused Core Modules and Development Boards should be stored in the protective shipping

1 Overview

1.1 Features

The Single Board Computer SBC-i.MX51 is based on Freescale's high-performance i.MX51x mobile platform, incorporating an ARM Cortex-A8 CPU, an Image Processing Unit (IPUv3EX) and a Video Processing Unit (VPU). The IPUv3EX provides comprehensive support for the connectivity to displays and cameras. The VPU supports hardware encoding and decoding of MPEG-4, H.263 and H.264 standards. Its memory capabilities (NAND Flash, DDR2 SDRAM) and numerous interfaces turn the SBC-i.MX51 into the ultimate development board for future high-end embedded devices comparable to netbooks. Other target applications include industrial automation and control systems. Figure 1-1 shows the board's features.

Extension Conn. A	Serial Interfaces	Video/Audio
1-Wire / I ² C	Ethernet	HDMI
2xUSB Host	USB Device	Line-In
2xSPI / SDIO	4xUSB Host	Headset-Out
Audio Port	USB-OTG	CVBS-Out
2xPWM	Processor	Misc
Keypad		Dynamic Power Management
2xUART	i.MX51	Reset Button, Power On Button
		Power LED, RGB LED
3x Analog In	JTAG	
Extension Conn. B	Memory	Optional Features
LCD Interface	DDR2 SDRAM (512 MByte)	3-axis Accelerometer
Touchscreen	NAND (2 GByte)	2.5W Stereo Amp
Camera Interface	SDHC Card Slot	Mic-In

Figure 1-1: SBC-i.MX51 features

1.2 Block Diagram

Figure 1-2 shows the main components and connectors of the SBC-i.MX51.

Figure 1-2: SBC-i.MX51 Overview

1.3 Software

Bluetechnix provides a Linux Board Support Package (BSP) free of charge. A Windows CE Board Support Package is also available. Please note that there might be additional costs for the Windows CE BSP and licensing. Please contact Bluetechnix for more details.

For more information regarding the provided software please visit the Bluetechnix support site at <u>http://support.bluetechnix.at/wiki</u>. Please note that these pages are continuously updated throughout the product lifecycle.

2 Components

CHNIX

The SBC-i.MX51 contains many peripherals to provide a lot of interfacing options. The next paragraphs give you a short overview of each component including a brief feature list. Please refer to the manufacturers' user manuals for more details.

2.1 Integrated Components

i.MX51 processor (Freescale, MCIMX515DJM8C)

The i.MX51 is a SoC for low power applications with an additional focus on multimedia.

- ARM Cortex A8 core
- 800 MHz core clock frequency
- 200 MHz DDR2 SDRAM interface
- Dynamic power management
- Hardware video codec
- Powerful graphics acceleration (OpenGL and OpenVG)

i.MX Companion IC (Freescale, MC13892JVK)

The Power Management IC (PMIC) MC13892 is Freescale's companion IC for i.MX series CPUs. It generates all required power supplies, and contains some additional features:

- Dynamic power control system
- Battery charging control logic
- Octal 10-Bit ADC
- Single RGB LED driver
- Backlight LED driver
- Real Time Clock

DDR2 SDRAM (Micron, MT47H64M16HR-25)

- 512 MByte
- DDR2-800 (800MB/s)

NAND Flash (Micron, MT29F16G08CBABAWP)

- 2GByte
- 8 Bit
- 4k pagesize

Ethernet Physical Transceiver (Micrel, KSZ8041)

- Ethernet/IEEE 802.3
- 10BaseT
- 100BaseTX
- Mll Interface

USB Physical Transceiver (SMSC, USB3317)

- USB-IF "High-Speed" compliant (V2.0)
- ULPI interface

USB HUB (SMSC, USB2517I)

- 7 port HUB
- USB-IF "High-Speed" compliant (V2.0)
- High Speed, Full-Speed and Low-Speed compatible

USB to UART Bridge (SiLabs, CP2102)

- USB device
- Usable for terminal applications

HDMI Transmitter (Analog Devices, AD9889B)

- HDMI 1.1 compatible
- I²S and SPDIF audio encoding

Audio Codec (Freescale, SGTL5000)

- Stereo Line In
- Stereo Line Out
- Microphone In (Mono, Electret or Dynamic microphones supported)

2.2 Optional Components

A few components are not mounted in the current version of the SBC-i.MX51. If you want to use these components contact Bluetechnix for custom assembling.

These optional components are:

- 2.5W Stereo Audio Amp (National Semiconductors, 2x NCP2820) including connectors
- PCB Microphone (Knowles Acoustics, SPM0208HD5)
- 3-Axis Acceleration Sensor (Freescale, MMA7660FC)
- Mini-PCI type slot for Wi2Wi Wireless modules
- SIM-Card holder

3 Standard I/O Connectors

There are two types of connectors on the SBC-i.MX51: standard I/O Connectors and Extension Connectors. All standard I/O Connectors (except JTAG) are accessible on the front or rear side of the board (see Figure 3-1).

Figure 3-1: Standard Interface positions

Front side Connectors:

- Triple Audio Jack (Microphone-In, Line-In and Headset-Out)
- TV out (not populated on SBC-i.MX51 V2.1)
- SD-card socket

• Power plug

Rear side Connectors:

- 4x USB A (host connector)
- Ethernet
- Mini USB AB (USB-OTG connector)
- USB-B (device connector for terminal application)
- HDMI Display output

JTAG Connector:

A standard ARM JTAG connector with 20 pins is available for debugging.

LED and Push Buttons:

There are two push buttons and a single RGB-LED for user interaction. The RGB LED is connected to the MC18392 LED interface.

The push buttons have following functions:

- S1: RESET
- S3: Power On

Figure 3-2: LED and button positions

If the SBC is enclosed in a chassis, you can mount a light pipe (515-1011F from DIALIGHT) above the RGB-LED for guiding the light to a front side panel.

4 Extension Connectors

The Extension Connectors allow connecting additional hardware to the SBC-i.MX51. Bluetechnix offers additional hardware for the SBC-i.MX51 such as a display extension board. See our website for more information. (http://www.bluetechnix.com/goto/sbc-i.mx51)

All connector I/O pins are either connected to the i.MX or to the MC13892 (see pin description). Most of the pins connected to the i.MX have alternate functions; for more details see the Pin Description Tables and consult the i.MX51 datasheet.

The connectors for the GPIO- and Video Extension Connectors are FX10A-80P/8-SV1(71) from Hirose (mating part is FX10A-80S/8-SV(71)). All other connectors are standard 2.54mm-pitch headers.

Figure 4-1: Extension Connector positions

4.1 GPIO/Automation Connector (X3)

The GPIO/Automation Extension Connector includes several serial interfaces, as well as a keypad, power-LED drivers and three analog inputs. See Figure 4-2 for a feature overview and Table 4-3 for a detailed pin description.

Figure 4-2: GPIO/Automation Extension Connector Interfaces

4.1.1 One-Wire-Interface

The 1-Wire interface is available to communicate with a generic 1-Wire device defined by Maxim-Dallas.

4.1.2 Analog-In

CHNIX

Three 10-Bit analog-digital-converters (ADC) are available for general use. The inputs are connected to ADIN[5..7] on the MC13892 companion chip.

4.1.3 l²C

The two l^2C serial busses allow the attachment of a variety of peripheral components to the GPIO/Automation Connector. Note that the l^2C1 is shared with the CSPI1 Serial Peripheral Interface.

4.1.4 Keypad

The connector features keypad pins to connect a six-by-four button matrix keyboard to the specially designated interface of the i.MX51.

4.1.5 LEDs

The MC13892 features an auxiliary display LED driver output and a keypad LED driver output. Yet, please refer to the Errata sheet of the MC13892 for problems which may appear when using this interface.

Figure 4-3: LED connection circuit

4.1.6 PWM

Two PWM outputs are available on the GPIO/Automation Extension Connector. Please note that the PWM1 is also present on the Video Extension Connector.

4.1.7 SPI

Two Serial Peripheral Interfaces are available on the connector. The CSPI1 interface is shared with the I²C1 and provides two slave select signals, the CSPI is shared with the SD-card interface, and provides only a single slave select signal.

4.1.8 SSI

This interface can be used as alternate digital audio channel and is connected to the AUD4 interface of the i.MX51.

4.1.9 UART

The signals of the UART2 and UART3 are available on the extension connector for the connection of a variety of peripheral devices.

4.1.10 Power Supplies

The GPIO/Automation Extension Connector provides different supply voltages. They can be used on a custom extension board. Some supply voltages are generated by the MC13892 and can be set to different values. They must be set and enabled first, by configuring the companion IC. The following table shows the maximum supply current for each voltage domain.

Signal Name	Voltage	Maximum Supply Current
P_5V0	5.0V	500mA ³⁾
P_3V3	3.3V	500mA ³⁾
P_VIOHI ¹⁾	2.775V	50mA ³⁾
P_SW4 ¹⁾	1.8V	50mA ³⁾
P_GEN2 ¹⁾	3.15V	70mA
P_AUDIO	2.3V, 2.5V, 2.775V, 3.0V	150mA
P_VIDEO	2.5V, 2.6V, 2.7V, 2.775V	350mA
P_SWLED ²⁾	4.3V to 26.5V	60mA

Table 4-1: Maximum power consumption for the GPIO / Automation Connector supplies

¹⁾ It is not advisable to alter these voltages; otherwise the board may get damaged.

²⁾The P_SWLED voltage drives the LEDs connected to the LED-driver pins. The output voltage will be set automatically by the MC13892. For LED connectivity see Figure 4-3. Please also refer to the MC13892 errata sheet available from the Freescale website.

³⁾Be aware that this power supply is available on both extension connectors and this is the maximum current that can be drawn altogether.

4.1.11 I/O Power Domains

All digital I/O pins belong to one of three available power domains: P_SW4 (1.8V), P_VIOHI (2.775V) or P_GEN2 (3.15V). The following table shows each interface with the corresponding voltage level.

BLUE

Interface	Pins	Power Domain	Description
1-Wire	1	P_VIOHI	OWIRE
l ² C2	2	P_VIOHI	I2C1.SCL, I2C1.SDA
Keypad	10	P_SW4	KPP.COL[05], KPP.ROW[03]
PWM	2	P_VIOHI	PWM1, PWM2
SD	6	P_GEN2	SD2.CMD, SD2.CLK, SD2.D0, SD2.D1, SD2.D2, SD2.D3
SPI	6	P_SW4	CSPI1.MOSI, CSPI1.MISO, CSPI1.SS0, CSPI1.SS1, CSPI1.RDY, CSPI1.SCLK
SSI	6	P_VIOHI	AUD4.RFS, AUD4.RSCK, AUD4.Tx, AUD4.Rx, AUD4.TSCK, AUD4.TFS
UART	4	P_VIOHI	UART2.TXD, UART2.RXD, UART3.TXD, UART3.RXD
PON	1	Open Drain	A_CTRL.PON1 – Power down Power Mgmt.
ADIN	3	-	ADC Input on MC13892
LED	2	P_SWLED	LED driver outputs

Table 4-2: Power Domains for I/Os

4.1.12 Pin Description Table

Pin No	Signal	Туре	Description
1	VUSB6	PWR	Power Supply
2	GND	PWR	Power Ground
3	GND	PWR	Power Ground
4	USBH6.D_P	Ю	USB D+
5	USBH6.D_N	Ю	USB D-
6	P_SWLED	PWR	Power Supply
7	LED_AD	0	LED driver output connected to MC18392
8	LED_KP	0	LED driver output connected to MC18392
9	GND	PWR	Power Ground
10	ADIN5	I	Analog input connected to MC18392
11	ADIN6	I	Analog input connected to MC18392
12	ADIN7	I	Analog input connected to MC18392
13	GND	PWR	Power Ground
14	P_GEN2	PWR	Power Supply
15	SD2_CMD	Ю	SD-card interface or CSPI_MOSI
16	SD2_CLK	0	SD-card interface or CSPI_SCLK
17	SD2_D0	Ю	SD-card interface
18	SD2_D1	Ю	SD-card interface
19	SD2_D2	Ю	SD-card interface
20	SD2_D3	Ю	SD-card interface or CSPI_SS2
21	GND	PWR	Power Ground
22	CSPI1_SCLK	Ю	SPI1 usable as I2C1_SCL or GPIO4_27
23	CSPI1_MOSI	Ю	SPI1 usable also as I2C1_SDA or GPIO4_22
24	CSPI1_MISO	I	SPI1 usable also as GPIO4_23
25	CSPI1_SS0	0	SPI1 usable also as GPIO4_24
26	CSPI1_SS1	0	SPI1 usable also as GPIO4_25
27	CSPI1_RDY	I	SPI1 usable also as GPIO4_26
28	P_SW4_1V8	PWR	Power Supply
29	GND	PWR	Power Ground
30	AUD4_RFS	Ю	Audio Port 4 usable also as GPIO2_0
31	AUD4_RSCK	10	Audio Port 4 usable also as GPIO2_3
32	AUD4_TX	0	Audio Port 4 usable also as GPIO2_4
33	AUD4_RX	I	Audio Port 4 usable also as GPIO2_5
34	AUD4_TSCK	10	Audio Port 4 usable also as GPIO2_6
35	AUD4_TFS	IO	Audio Port 4 usable also as GPIO2_7

Table 4-3: GPIO / Automation Connector pin description

4.2 Digital Video Connector (X11)

The Video Extension Connector is designed to add a custom video extension board with user-defined camera and display components, e.g. a CMOS sensor and a LCD display.

Additionally, some GPIOs are available for configuring the interface and handshaking. Touch screen functionality can be implemented by connecting four analog lines, which are routed to the MC13892, to an appropriate display.

Figure 4-4: Digital Video Connector

4.2.1 Camera Sensor Interface Port (CSI1)

A camera (e.g. an OmniVision OV2655) can be connected to the SBC-i.MX51x board using the CMOS Sensor Interface 1 (CSI1).

Interface	Pins	Power Domain	Description
CSI1_Data	10	P_SW4	CSI1.D0 - CSI1.D9
CSI1_Control	5	P_SW4	CSI1.VSYNC, CSI1.HSYNC, CSI1.PIXCLK, CSI1.MCLK, CSI1.PWDN
l ² C2	2	P_VIOHI	12C2.SDA, 12C2.SCL

Table 4-4: CSI1 Interface description

4.2.2 LCD Port (DISP2)

The DISP2 interface is available to connect an LCD display to the SBC-i.MX51 board. On the secondary display port, the i.MX51 supports resolutions up to 1280X720. Limitations may apply when using both display interfaces simultaneously.

Interface	Pins	Power Domain	Description
DISP2_Data	16	P_VIOHI	DISP2.D0 – DISP2.D15
DISP2_Control	3	P_VIOHI	DISP2.VSYNC, DISP2.HSYNC, DISP2.CLK
DISP2_Control	1	P_SW4	DISP2.DE
PWM	2	P_VIOHI	PWM1, TFT.PWRCTRL - Contrast
LED	2	P_SWLED	LED.MD - Display Backlight
ADIN	4	-	ADIN[14] – Touch screen

Table 4-5: DISP2 Interface description

4.2.3 GPIOs

Some additional GPIOs can be used as control signals for either the camera or the display interface.

Interface	Pins	Power Domain	Description
GPIO3_x	5	P_SW4	General Purpose IO
GPIO2_20	1	P_VIOHI	General Purpose IO
GPIO1_2	1	P_VIOHI	General Purpose IO / PWM1_OUT

Table 4-6: GPIO Power Domains

4.2.4 Power Supplies

CHNIX

The Video Extension Connector provides six different supply voltages. They can be used for a custom extension board. Some supply voltages are generated by the MC13892 and can be set to different values. They must be set and enabled first, by configuring the companion IC. The following table shows the maximum supply current for each voltage.

Signal Name	Voltage	Maximum Current
P_5V0	5.0V	500mA ³⁾
P_3V3	3.3V	500mA ³⁾
P_SW4 ¹⁾	1.8V	50mA ³⁾
P_GEN3	1.8V, 2.9V	50mA ³⁾
P_DIG	1.05V, 1.25V, 1.65V, 1.8V	50mA
P_CAM	2.5V, 2.6V, 2.75V, 3.0V	250mA
P_SWLED ²⁾	4.3V to 26.5V	60mA

Table 4-7: Maximum power consumption for the Digital Video Connector supplies

¹⁾ It is not advisable to alter these voltages; otherwise the board may get damaged.

²⁾The P_SWLED voltage drives the LEDs connected to the LED-Driver Pins. The output voltage will be set automatically by the MC13892. For LED connectivity, see Figure 4-3. Please also refer to the MC13892 errata sheet available from the Freescale website.

³⁾Be aware that this power supply is available on both extension connectors and this is the maximum current that can be drawn altogether.

4.2.5 Pin Description Table

Pin No	Signal	Туре	Description
1	GND	PWR	Power Ground
2	GND	PWR	Power Ground
3	GND	PWR	Power Ground
4	NC	NC	Not Connected
5	NC	NC	Not Connected
6	P_VIOHI	PWR	Power Supply
7	DISP2_DAT1	0	Display Port 2 Data
8	DISP2_DAT3	0	Display Port 2 Data
9	DISP2_DAT5	0	Display Port 2 Data
10	DISP2_DAT7	0	Display Port 2 Data
11	GND	PWR	Power Ground
12	DISP2_DAT9	0	Display Port 2 Data
13	DISP2_DAT11	0	Display Port 2 Data
14	DISP2_DAT13	0	Display Port 2 Data
15	DISP2_DAT15	0	Display Port 2 Data
16	DI2_PIN2	0	Display Port 2 HSYNC
17	DI_GP4	0	Display Port 4 Data Enable
18	GND	PWR	Power Ground
19	DISPB2_SER_DIO	Ю	usable as GPIO3_6
20	DISPB2_SER_CLK	Ю	usable as GPIO3_7
21	DISPB2_SER_RS	Ю	usable as GPIO3_8
22	GPIO1_2	Ю	GPIO with PWM functionality
23	GND	PWR	Power Ground
24	ADIN2	l	Analog input for touch pad usage connected to MC18392
25	ADIN1	1	Analog input for touch pad usage connected to MC18392
26	CSPI1_MOSI	10	usable as I2C1_SDA for cam configuration or GPIO4_22
27	CSPI1_SCLK	10	usable as I2C1_SCL for cam configuration or GPIO4_27
28	CSI1_D10	I	CMOS sensor interface 1 Data
29	CSI1_D12		CMOS sensor interface 1 Data
30	CSI1_D14	1	CMOS sensor interface 1 Data
31	CSI1_D16		CMOS sensor interface 1 Data
32	CSI1_D18	1	CMOS sensor interface 1 Data
33	CSI1_VSYNC	1	CMOS sensor interface 1 VSYNC
34	CSI1_HSYNC		CMOS sensor interface 1 HSYNC
35	CSI1_D8	0	usable as GPIO3_12 (e.g. Power Down)
36	P_CAM	PWR	Power Supply
37	P_GEN3	PWR	Power Supply
38 39	GND GND	PWR PWR	Power Ground Power Ground
39 40	GND	PWR PWR	Power Ground Power Ground
40	P_5V0	PWR	Power Supply
41	P_5V0	PWR	Power Supply
43	P_5V0	PWR	Power Supply
44	P_DIG	PWR	Power Supply
45	P SW4	PWR	Power Supply
46	GND	PWR	Power Ground
47	CSI1_MCLK	0	CMOS sensor interface 1 Master Clock
48	CSI1_PIXCLK	I	CMOS sensor interface 1 Pixel Clock
49	GND	PWR	Power Ground
50	CSI1_D19		CMOS sensor interface 1 Data
51	CSI1_D17		CMOS sensor interface 1 Data
	···· _ = ··	•	

Signal Pin No Туре Description CSI1 D15 CMOS sensor interface 1 Data 52 T CSI1_D13 53 CMOS sensor interface 1 Data CSI1_D11 CMOS sensor interface 1 Data 54 L 55 GND PWR **Power Ground** Analog input for touch pad usage connected to MC18392 56 ADIN3 L Analog input for touch pad usage connected to MC18392 57 ADIN4 PWR 58 GND Power Ground EIM_A26 Ю usable as GPIO2_20 59 60 LED MD Ο LED driver output connected to MC18392 PWR 61 P_SWLED LED Power Supply 62 DISPB2_SER_DIN ю usable as GPIO3 5 63 GND PWR **Power Ground** 64 DI2 PIN3 0 **Display Port 3 VSYNC** 65 DI2_DISP_CLK 0 **Display Port 2 Clock** 66 DISP2_DAT14 Ο **Display Port 2 Data** 67 DISP2 DAT12 0 **Display Port 2 Data** 68 DISP2_DAT10 0 **Display Port 2 Data** 0 **Display Port 2 Data** 69 DISP2_DAT8 70 GND PWR **Power Ground** 71 DISP2_DAT6 0 **Display Port 2 Data** 72 DISP2 DAT4 Ο **Display Port 2 Data** 73 DISP2 DAT2 0 Display Port 2 Data 74 DISP2_DAT0 Ο **Display Port 2 Data** 75 GND PWR Power Ground NC Not Connected 76 NC 77 NC NC Not Connected 78 P_3V3 PWR **Power Supply** 79 P_3V3 PWR **Power Supply** 80 P_3V3 PWR **Power Supply**

Table 4-8: Digital Video Connector pin description

4.3 Audio Connector (X17)

BLUE

CHNIX

This extension connector contains the analog audio signals, as well as an SPDIF interface. This connector is also compatible with some Nano-ITX chassis.

Pin No	Description	Pin No	Description
1	SPDIF	2	P_5V0
3	GND	4	n.c.
5	Headphone right	6	Headphone left
7	Line in right	8	Line in left
9	n.c.	10	Microphone in
11	n.c.	12	n.c.
13	GND	14	GND

Table 4-9: Audio Extension Connector pin description

4.4 Reset / Power-On Connector (X16)

The two signals Power-On and Reset are accessible via this connector. These signals are the same as the ones routed to the two push buttons.

Pin No	Signal	Description	Pin No	Signal	Description
1	PON1	Power On (internally pulled up)	2	GND	Signal ground
3	POR	Power On Reset (internally pulled up)	4	GND	Signal ground

Table 4-10: Reset / Power-On Connector pin description

4.5 **Power Supply Connector (X18)**

The alternate Power Supply Extension Connector provides the possibility to power the board via a 3-pin header.

Pin No	Signal	Description
1	GND	Power Ground
2	PDI	Power Detect Input (leave open if unused)
3	VIN	Power Supply

Table 4-11: Power Supply Extension Connector pin description

5 Operating Conditions

This section provides the operating conditions for the SBC-i.MX51 Single Board Computer.

5.1 Electrical Characteristics

Parameter	Symbol	Min	Тур.	Мах	Unit
Main Power Supply Voltage	VIN	6.0	12.0	24.0	V
Board Power Consumption ¹⁾		-	3.5	10	W
Operating Temperature ²⁾		0	-	70	°C
Processor Clock Frequency	CPUCLK	TBD	800	800	MHz
USB Supply Voltage	VUSBx	4.5	5.0	5.5	V
USB Supply Current	VUSBx	-	-	500	mA
Extender Supply Voltage	P_5V0	4.5	5.0	5.5	V
Extender Supply Current	P_5V0	-	-	500	mA

¹⁾ The Power consumption refers to a single board, with no Extension Boards or USB-Devices plugged in

²⁾ The board is equipped with components specified for consumer temperature range. Please consult Bluetechnix for appropriate industrial assembling.

5.2 Digital I/O Characteristics

Most IO pins available on the Extension Connectors (X3 and X11) are connected to the i.MX, and are assigned to one of three power domains.

Parameter	Power Domain	Symbol	Min	Тур.	Max	Unit
High-Level Output Voltage	P_VIOHI	V_{oh}	2.625	2.775	3.075	V
High-Level Output Voltage	PGEN2	V_{oh}	3.0	3.15	3.45	V
High-Level Output Voltage	P_SW4	V_{oh}	1.65	1.8	2.1	V
Low-Level Output Voltage	all domains	V _{ol}	-	-	0.15	V
High Level Output Current	all domains	l _{oh}	1.9	-	6.6	mA
Low-Level Output Current	all domains	l _{ol}	1.9	-	6.6	mA
High-Level Input Voltage	P_VIOHI	V_{ih}	1.95	-	2.775	V
Low -Level Input Voltage	P_VIOHI	V _{il}	0	-	0.83	V
High-Level Input Voltage	PGEN2	V_{ih}	2.21	-	3.15	V
Low-Level Input Voltage	PGEN2	V _{il}	0	-	0.94	V
High -Level Input Voltage	P_SW4	V _{ih}	1.26	-	1.8	V
Low -Level Input Voltage	P_SW4	V _{il}	0	-	0.54	V

Table 5-2: Digital IO characteristics

5.3 Analog Inputs

The 10-bit ADC, which is integrated in the MC13892, allows measuring analog voltages. These analog inputs are mainly used for touchpad sensing or voltage (battery) monitoring.

Parameter	Symbol	Min	Тур.	Max	Unit
Resolution			10		Bit
Conversion Current	l _c		1		mA
Conversion Core Input Voltage	Vin	0	-	2.4	V
Conversion Time Per Channel	tc			10	μs

Table 5-3: ADC	characteristics
----------------	-----------------

5.4 Boot Mode Settings

The SBC supports three different boot modes. For USB/UART boot mode, the i.MX51 is polling for activity on both USBOTG and UART1. For a more detailed explanation please see the software documentation on http://support.bluetechnix.at/wiki.

Mode	Boot Switch Setting	Boot Media
1	On 0ff 1 2 3 4 5 6 7 8	SD Card
2	On 0ff 1 2 3 4 5 6 7 8	NAND Flash
3	On 0ff 1 2 3 4 5 6 7 8	USBOTG or UART1 (UART-USB-Bridge)

Table 5-4: Boot Modes

5.5 Battery Operation

The SBC-i.MX51 is not designed for battery operation. Anyhow there is a possibility to connect a Li-lon or LiPo battery to the Board, with some small board modifications. If you want to do this, please contact Bluetechnix for support.

5.6 Backup Battery

There is also a possibility to add a 6.8mm rechargeable or non-rechargeable lithium coin cell to keep the RTC running and the RAM self-refreshing. The SBC is delivered only with a 6.8mm coin cell holder but without battery.

6 Mechanical specification

This section shows the position of all connectors and mounting holes.

6.1 Connector Locations

Figure 6-1: Connector Dimensions

6.2 Mounting Hole Dimensions

Figure 6-2: Mounting-Hole Dimensions

7 Anomalies

Version	Date	Description
2.1	2010-12-22	It is recommended to take care of active cooling when multiple USB devices are attached, HDMI is active and you are using supply voltages above 16V _{DC} .
2.1	2010-12-22	The USB hub is working in bus powered mode. For information on how to use self powered mode please see: https://support.bluetechnix.at/wiki/Known_Issues_(SBC-i.MX51)
2.1	2010-12-22	Using the USB OTG in device mode applies 5 volts on the USB port (Pin x) which doesn't comply with the USB-OTG standard. It may lead to small equalizing currents.

Table 7-1: Overview product anomalies

8 Product Changes

In the following table, you can find changes and add-ons for different SBC versions.

Version	Туре	Changes
1.2		First SBC release
2.1	Connector Type	The two expansion connectors have been changed to a FX10-80S from Hirose for better signal integrity and more flexibility
2.1	Connector Position	The 4 USB-Host jacks and the RJ45 jack have been exchanged
2.1	Assembling Option	The TV-Out jack is populated in this version

Table 8-1: SBC-i.MX51 Product changes

For the latest product change information, please consult the product web page:

http://www.bluetechnix.com/goto/sbc-i.mx51

If you want to know in detail, which components are mounted on your board, please see the production information on our wiki page:

https://support.bluetechnix.at/wiki/Main_Page#SBC-i.MX51_documentation

9 Document Revision History

Version	Date	Document Revision
3	2010-12-22	Updated anomalies.
2	2010-06-24	Update for Board Revision V2.1.
1	2010-05-11	First draft release.

Table 9-1: Revision History

10 List of Abbreviations

PWR	Power

- 0 Output
- L
- Input In-Out (bidirectional) Ю
- Input with internal pull-up resistor lpU

11 List of Figures and Tables

Figures

Figure 1-1: SBC-i.MX51 features	6
Figure 1-2: SBC-i.MX51 Overview	7
Figure 3-1: Standard Interface positions	10
Figure 3-2: LED and button positions	11
Figure 4-1: Extension Connector positions	12
Figure 4-2: GPIO/Automation Extension Connector Interfaces	13
Figure 4-3: LED connection circuit	13
Figure 4-4: Digital Video Connector	
Figure 6-1: Connector Dimensions	24
Figure 6-2: Mounting-Hole Dimensions	25

Tables

Table 4-1: Maximum power consumption for the GPIO / Automation Connector supplies	14
Table 4-2: Power Domains for I/Os	15
Table 4-3: GPIO / Automation Connector pin description	
Table 4-4: CSI1 Interface description	
Table 4-5: DISP2 Interface description	
Table 4-3: GPIO / Automation Connector pin description Table 4-4: CSI1 Interface description Table 4-5: DISP2 Interface description Table 4-6: GPIO Power Domains	
Table 4-7: Maximum power consumption for the Digital Video Connector supplies	18
Table 4-8: Digital Video Connector pin description	
Table 4-9: Audio Extension Connector pin description	
Table 4-10: Reset / Power-On Connector pin description	
Table 4-11: Power Supply Extension Connector pin description	
Table 5-1: Operating Conditions	
Table 5-1: Operating Conditions Table 5-2: Digital IO characteristics	
Table 5-3: ADC characteristics	23
Table 5-4: Boot Modes	
Table 7-1: Overview product anomalies	
Table 8-1: SBC-i.MX51 Product changes	
Table 8-1: SBC-i.MX51 Product changes Table 9-1: Revision History	