

Pxxx Linux
Development
Package

User Manual

Version 3

© Bluetechnix 2015

Bluetechnix

Waidhausenstraße 3/19

A-1140 Vienna

AUSTRIA

office@bluetechnix.com

www.bluetechnix.com

Pxxx Linux Development Package – User Manual

Document No.: 900-308 / B

Publication date: August 3, 2015

Subject to change without notice. Errors excepted.

This document is protected by copyright. All rights reserved. No part of this document may be reproduced or

transmitted for any purpose in any form or by any means, electronically or mechanically, without expressly

written permission by Bluetechnix.

Windows is a registered trademark of Microsoft.

Blackfin® is a registered trademark of Analog Devices, Inc.

© Bluetechnix 2015

Table of Contents

1 General Information .. 6

1.1 Symbols Used ... 6

1.2 Commands .. 6

1.3 Code Excerpts .. 7

1.4 Nomenclature .. 7

2 Overview ... 8

2.1 From PC to Embedded ... 8

2.2 The Inner Life of a Bluetechnix ToF Device with Linux ... 9

2.2.1 Flash Map .. 9

2.2.2 Access ... 10

2.2.3 Happy Development .. 10

3 Prerequisites ... 11

3.1 Work station .. 11

3.1.1 Specific packages.. 11

3.2 Pxxx Device... 11

4 Package Installation ... 12

4.1 Unpacking ... 12

4.2 Contents .. 12

5 Connecting to the ToF Device ... 13

5.1 Configuration and Test .. 13

5.2 Setup SSH key-based Authentication .. 13

6 Build and Run the Demo Application ... 14

6.1 Build .. 14

6.2 Run .. 14

7 Demo Application ... 16

7.1 Application sequence .. 16

7.2 System Log ... 17

7.3 ToF Device Access ... 17

7.4 GPU/OpenCL .. 18

7.5 NEON example .. 20

8 Application Auto Start .. 22

9 Debugging .. 23

9.1 Installing Debug Tools on the Target .. 23

9.2 Release vs. Debug Build ... 23

9.3 Running GDB on the Device ... 23

9.4 Running Remote GDB Debug Session ... 24

© Bluetechnix 2015

10 Logging ... 26

11 Additional Libraries ... 27

12 Efficient Embedded Development .. 28

12.1 Using the GPU/OpenCL .. 28

12.2 Using NEON SIMD Instructions .. 28

13 Account Management .. 30

14 Documentation Resources ... 31

15 History ... 32

15.1 Version Information ... 32

15.2 Anomalies .. 32

16 Document Revision History .. 33

© Bluetechnix 2015

© Bluetechnix 2015

All Rights Reserved.

The information herein is given to describe certain components and shall not be considered as a guarantee

of characteristics.

Terms of delivery and rights of technical change reserved.

We hereby disclaim any warranties, including but not limited to warranties of non-infringement, regarding

circuits, descriptions and charts stated herein.

Bluetechnix makes and you receive no warranties or conditions, express, implied, statutory or in any

communication with you. Bluetechnix specifically disclaims any implied warranty of merchantability or fitness

for a particular purpose.

Bluetechnix takes no liability for any damages and errors causing of the usage of this board. The user of this

board is responsible by himself for the functionality of his application. He is allowed to use the board only if he

has the qualification. More information is found in the General Terms and Conditions (AGB).

Information

For further information on technology, delivery terms and conditions and prices please contact Bluetechnix

(http://www.bluetechnix.com).

Warning

Due to technical requirements components may contain dangerous substances.

User Manual - Pxxx Linux Development Package Last change: 3 August 2015
 Version 3

© Bluetechnix 2015 Page 6 | 33

1 General Information

This guide applies to all smart cameras based on the Argos® smart camera platform from Bluetechnix

GmbH. Follow this guide chapter by chapter to set up and understand your product. If a section of this

document only applies to certain camera models, this is indicated at the beginning of the respective section.

1.1 Symbols Used

This guide makes use of a few symbols and conventions:

Warning

Indicates a situation which, if not avoided, could result in minor or moderate injury
and/or property damage or damage to the device.

Caution

Indicates a situation which, if not avoided, may result in minor damage to the
device, in malfunction of the device or in data loss.

Note

Notes provide information on special issues related to the device or provide information that
will make operation of the device easier.

 Procedures

A procedure always starts with an headline
1. The number indicates the step number of a certain procedure you are expected to

follow. Steps are numbered sequentially.
This sign indicates an expected result of your action.

 References

This symbol indicates a cross reference to a different chapter of this manual or to an

external document.

1.2 Commands

The development package is mainly controlled via command line. Commands are indicated by a bold fixed-

width font and a border:

ssh user@192.168.0.10

Answer or outputs from commands are indicated by a fixed-width font and a border, both in grey:

user@sentis ~$

User Manual - Pxxx Linux Development Package Last change: 3 August 2015
 Version 3

© Bluetechnix 2015 Page 7 | 33

1.3 Code Excerpts

Code excerpts are listed similarly, but in blue color:

int main(int argc, char **argv) {

1.4 Nomenclature

“Host”, “Workstation” means your development PC (typically a Linux one).

“Device”, “ToF Device”, “Target” means your ToF device, i.e., a Bluetechnix ToF Camera Product, or a ToF

Evaluation Kit. “Embedded” means anything related to the ToF device (= the embedded device).

User Manual - Pxxx Linux Development Package Last change: 3 August 2015
 Version 3

© Bluetechnix 2015 Page 8 | 33

2 Overview

Welcome to the Pxxx Linux Development Package!

This package enables you to develop your own embedded application on Bluetechnix Pxxx ToF devices.

Be aware that not all firmware versions of the ToF devices are fully compatible to this development package.

Find below a list of the minimum firmware version required to work with the Pxxx Linux development

Package.

Sentis-P510 >= V0.5.0
Sentis-P509 >= V0.2.1

Please update your ToF device if it has an earlier firmware version. Refer to the appropriate Software User

Manual of your device for more information how to perform a firmware update.

2.1 From PC to Embedded

Bluetechnix Pxxx ToF devices provide an Ethernet interface to the outside world. When using the ToF device

as a stand-alone product, it provides a streaming data interface via UDP/IP, and a configuration interface via

TCP/IP. Using the BTA (Bluetechnix ToF API) Ethernet Library on a PC, one can easily access both

interfaces, configure the ToF device as desired, and receive image data. Let’s depict that in a little figure:

Bluetechnix
P5xx ToF Device

PC / Workstation / Server

UDP Data
Interface

TCP Control
Interface

Bluetechnix ToF API

Custom application

Figure 1: Custom Application on Work Station

The Pxxx Linux Development Package is for developers who want to bring their Custom application directly

onto the ToF Device. Therefore, the Bluetechnix ToF API library is moved from the host to the target, which is

(nearly) transparent for the Custom application. Let’s adapt our little figure:

User Manual - Pxxx Linux Development Package Last change: 3 August 2015
 Version 3

© Bluetechnix 2015 Page 9 | 33

Bluetechnix
P5xx ToF Device

UDP Data
Interface

TCP Control
Interface

Bluetechnix ToF API

Custom application

Figure 2: Custom Application on ToF device

The firmware of our ToF devices supports several connections to the TCP Control Interface. Though in the

embedded case, your custom application – executing on the device itself – will use the control interface to

configure the camera, you still have access to the device through Ethernet, e.g., for uncommon tasks as

firmware update.

2.2 The Inner Life of a Bluetechnix ToF Device with Linux

2.2.1 Flash Map

As an introduction to the embedded device, we show in the next figure the flash layout of Bluetechnix ToF

devices with embedded Linux on it. There are two flash types, one boot flash, and one main flash. The main

flash contains

 Two Linux kernel images – one active, one backup

 Two read-only file system images in partitions – one active, one backup

 A partition for settings, e.g., register maps for the ToF device. Mounted always in /mnt/settings/.

 A partition for the system log files, mounted always in /mnt/logs/.

 The biggest part of the main flash is reserved for custom data and applications. This partition is

writable and the home directory of the ‘user’ user. Your application and data will go here! The

partition is always mounted in /mnt/user in the embedded Linux OS.

Boot Flash Main Flash

Boot
loader

Linux
Image 1

Linux
Image 2

Partition 1

Root File
System 1

Partition 2

Root File
System 2

Partition 3

Settings

Partition 5

Log Files

Partition 6

Custom Data/
Application

Figure 3: Flash Layout of Bluetechnix ToF Devices with Linux

User Manual - Pxxx Linux Development Package Last change: 3 August 2015
 Version 3

© Bluetechnix 2015 Page 10 | 33

2.2.2 Access

You can access each ToF device like any other Linux PC: via SSH (Secure Shell).

There are two user accounts configured out-of-the-box:

 root (default password: root): This is the Linux “almighty” user. The operator of a ToF device decides

whether to keep the default password, change the password, or disable root login altogether.

 user (default password: user): This is a non-root user. It’s home directory is /mnt/user, the place

which is reserved for your custom applications. This is the account you should use during

development.

2.2.3 Happy Development

Here are some recommendations for your embedded development!

 /mnt/user belongs to you! But never access block devices directly!

 Access the ToF device via SSH, using the ‘user’ account. By using this account, you are safe from

destroying/overwriting anything relevant that may prevent successful boot of the ToF device.

 Use the ‘root’ account with caution, if required.

User Manual - Pxxx Linux Development Package Last change: 3 August 2015
 Version 3

© Bluetechnix 2015 Page 11 | 33

3 Prerequisites

3.1 Work station

We recommend your work station where you develop for the Pxxx target to be a Linux machine. We have

tested everything on the Ubuntu 14.04 x64 operating system, but any similar operating system should work

as well.

3.1.1 Specific packages

 lib32ncursesw5 (required by GDB)

3.2 Pxxx Device

We assume that you have successfully brought up your Pxxx ToF device, using documentation and tools

provided with it. Your work station must have an Ethernet connection to the device, and you must know the

devices’ IP address.

It is recommended but not required that you set up NAT translation on your work station, so that the ToF

device has access to the Internet (for synchronization of the time with an NFS server).

User Manual - Pxxx Linux Development Package Last change: 3 August 2015
 Version 3

© Bluetechnix 2015 Page 12 | 33

4 Package Installation

4.1 Unpacking

Unpack the compressed package using your favorite file manager, or use the following command on Linux

command line:

tar -xJf <File>

4.2 Contents

app/ Demo application source code
inc/ Include Files (Header Files)
lib/ Target Libraries
lib/libbta_eth.so Bluetechnix ToF API compliant library for Ethernet devices
Makefile The central Makefile for executing some sample tasks

(compilation, debugging, etc.)
Type ‘make help’ to see a list of supported Make targets.

Target.inc Target connection information (IP address)
toolchain/ Cross toolchain and debug tools

User Manual - Pxxx Linux Development Package Last change: 3 August 2015
 Version 3

© Bluetechnix 2015 Page 13 | 33

5 Connecting to the ToF Device

5.1 Configuration and Test

We assume your Pxxx device is up and connected to the work station via Ethernet. Please make a first

attempt to connect to the device via SSH. (Please replace the IP address with the actual IP address of your

device!)

ssh user@192.168.0.10

If the connection is established, you will be asked for a password. Enter ‘user’ as password. You will be

greeted by the device’s command prompt:

user@sentis ~$

If this is successful, communication with the device works! Exit from the devices’ command prompt by

hitting Ctrl+d or typing

exit

The development package needs to know the IP address of your Pxxx device. Please edit the file Target.inc

and set the correct IP address. The default is

TARGET_IP_ADDR = 192.168.0.10

5.2 Setup SSH key-based Authentication

Because it is very comfortable to access the device via SSH without a password, we will now let the

developer package set up authentication via SSH key to access the device. Please type

make setup_login

and follow the instructions. If you don’t have a public SSH key on your work station yet (~/.ssh/id_rsa.pub),

the script will automatically create one for you – just follow the instructions on the terminal. Afterwards, it will

copy your public SSH key to the device.

To test the login again (this time without password), you may again type

ssh user@192.168.0.10

You should get to devices’ prompt again without entering a password.

User Manual - Pxxx Linux Development Package Last change: 3 August 2015
 Version 3

© Bluetechnix 2015 Page 14 | 33

6 Build and Run the Demo Application

It is time to build and run the demo application!

6.1 Build

Run the following command in the Development Package’s base directory:

make

If you can’t see any build errors, you should have the executable for the device built in the app/ directory.

You can verify it by the following command

file app/bta_eth_example

which gives the following output:

app/bta_eth_example: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV),

dynamically linked (uses shared libs), for GNU/Linux 2.6.31, not stripped

(Note the architecture of the ELF file is “ARM”.)

6.2 Run

Now we must deploy the application and the library onto the device. Execute the following command to

accomplish this:

make deploy

Afterwards, log in to the device (replacing the IP address by your devices’ IP of course):

ssh user@192.168.0.10

Now, there is a shell script (which was automatically deployed) to run the application. The scripts sets the

LD_LIBRARY_PATH environment variable before running the application, so that the application knows

where to find the libbta_eth.so library. Execute:

./run_app.sh

And you will see the following output (we will go through the demo application in chapter 7 in detail):

gpuInit

 CL_DEVICE_NAME: Vivante OpenCL Device

 CL_DRIVER_VERSION: OpenCL 1.1

GPU initialized

BTAinitConfig()

BTAopen()

…

*** bta_eth_example is finished ***

User Manual - Pxxx Linux Development Package Last change: 3 August 2015
 Version 3

© Bluetechnix 2015 Page 15 | 33

For further development, it is recommended to keep the SSH connection to the device open, and open an

additional terminal window for building on the work station.

User Manual - Pxxx Linux Development Package Last change: 3 August 2015
 Version 3

© Bluetechnix 2015 Page 16 | 33

7 Demo Application

Now let’s have a detailed look at the demo application. There are three C source files:

1. app/bta_eth_example.c: The main source file which opens the Pxxx ToF device via the BTA Eth

library, configures ToF parameters, and demonstrates accessing of the frame content.

2. app/gpu_opencl_example.c: Demonstrates how to use the GPU of the i.MX6 processor with the

OpenCL interface. Also see chapter 12.1.

3. app/neon_example.c: Demonstrates how to use the NEON instruction set of the i.MX6 ARM cores.

Also see chapter 12.2.

7.1 Application sequence

The sequence of the demo application is as follows:

1. Open the system log.

2. Initialize OpenCL.

3. Initialize a config struct for BTA (Bluetechnix ToF API) library.

4. Open the ToF device with the BTA library.

5. Get and print the device type of the Pxxx device.

6. Read and write register 0x0005 of the device.

7. Configure the device to send the UDP data stream to the loopback IP address 127.0.0.1 (It is by

default set to the multicast address 224.0.0.1).

8. Get a frame using the BTA library.

9. Get amplitude data from the frame using the BTA library and print the pixel values of the first pixel

row.

10. Demonstrate OpenCL usage by creating a mask from the amplitude data, in which all pixels with an

amplitude higher than 300 get value 0xFFFF, and all other pixels get 0x0000. First pixel row is also

printed.

11. Demonstrate NEON instruction set usage by creating the same mask again, and printing also the first

pixel row.

12. Get XYZ Cartesian data from the frame using the BTA library and print the values of the first pixel

row.

13. Free the frame.

14. Wait 1 second – in this time, you will see the frameArrived() callback to be called frequently (i.e., for

each frame that is received from the device in the background).

15. Clean up OpenCL/GPU stuff.

User Manual - Pxxx Linux Development Package Last change: 3 August 2015
 Version 3

© Bluetechnix 2015 Page 17 | 33

7.2 System Log

It is recommended that your application sends errors and informational messages to the system log. Of

course, you can work with printf() outputs as well, especially during development.

To open the system log:

openlog("USERAPP", 0, LOG_USER);

The string (here: “USERAPP”) will identify all your messages in the system log.

For the actual logging – depending on the severity of the message:

syslog(LOG_DEBUG, "Callback: infoEvent (%d) %s\n", eventId, msg);

syslog(LOG_INFO, "Starting\n");

syslog(LOG_ERR, "Failed to initialize the GPU\n");

Please see chapter 10 for more information about the system log (e.g. where you can find it)!

7.3 ToF Device Access

We are using natively on the target the EthLib (Ethernet Library) that follows the Bluetechnix ToF API (BTA).

This library is available for x86/x64 Windows and Linux architectures as well as for the ARM embedded

architecture, which means, an application that was developed for PC to retrieve 3D data, configure the ToF

device, and process the received data, can be moved onto the ToF device itself with less effort.

Let’s go through the example code now.

 BTAinitConfig() initializes a configuration struct that sets parameters for how to connect to the ToF

device, for the kind of data that is desired, for callbacks, etc.

One change here – when moving from PC to embedded – is the configuration of the IP addresses.

We use the local loopback interface (IP address 127.0.0.1) to receive the UDP data stream as well as

for the target address where the TCP configuration service listens to:

/* TCP control connection (device's IP address) */

uint8_t tcpDeviceIpAddr[] = { 127, 0, 0, 1 }; /* Connect to loopback

interface */

config.tcpDeviceIpAddr = tcpDeviceIpAddr;

config.tcpDeviceIpAddrLen = 4;

config.tcpControlPort = 10001;

 BTAopen() instructs the library to establish a connection to the ToF device via the Bluetechnix

Ethernet protocol.

 BTAgetDeviceInfo(): Reads the device identifier from the device. You may use it to check if you are

connected to the right type of ToF device. The returned struct should be freed with

BTAfreeDeviceInfo() as you can see in the example.

 BTAisConnected(): Check if the connection is established.

User Manual - Pxxx Linux Development Package Last change: 3 August 2015
 Version 3

© Bluetechnix 2015 Page 18 | 33

 BTAreadRegister() and BTAwriteRegister(): Read and write ToF device registers. The complete list of

available registers can always be found in the Software User Manual of the respective ToF device.

In the demo code, the BTAwriteRegister() function is used to configure the destination IP address for

the UDP 3D data stream, as well as the destination IP address for the 2D RTP data stream:

printf("Configuring camera to use loopback interface\n");

uint32_t camLocalConfig[4][2] = { /* Address */ /* Value */

 {0x024c, 1}, /* UDP Stream IP: 127.0.0.1 */

 {0x024d, (127<<8)},

 {0x0252, 1}, /* 2D Stream IP: 127.0.0.1 */

 {0x0253, (127<<8)},

};

for (int i=0; i<4; i++) {

 status = BTAwriteRegister(btaHandle, camLocalConfig[i][0],

&camLocalConfig[i][1], 0);

 if (status != BTA_StatusOk) {

 BTAstatusToString(status, statusString, 50);

 printf("error: %s\n", statusString);

 return -1;

 }

}

 BTAgetFrame() returns a complete frame. Note in the example, there is also a callback target

frameArrived() registered, which is executed each time a new frame is received from the BTA library.

For fluent operation, there should not be long processing time within this callback!

After having processed the frame that was received with BTAgetFrame(), it must be freed with

BTAfreeFrame().

 BTAgetAmplitudes(), BTAgetXYZCoordinates(), etc. each get the specified data from the frame

structure.

 BTAclose() closes the library and the connection to the ToF device.

A complete Reference Manual for the BltTofApi is available in our Support Wiki:

https://support.bluetechnix.at/wiki/Bluetechnix_%27Time_of_Flight%27_API#Reference_Manual

7.4 GPU/OpenCL

The i.MX6 Quad processor has – as indicated by its name – four Cortex-A9 cores running at max. 1 GHz. A

part of the available processing power is used by the ToF device firmware – how much, depends heavily on

the current configuration or specification of the ToF device (frame rate, sensor size, filter configuration, etc.).

The GPU of the i.MX6Q features an OpenCL 1.1 interface and thus can be used – additionally to the ARM

cores – to execute fast calculations, as required for typical image processing.

Some ToF devices already use the GPU in their firmware, in which case the GPU cannot be used for any

user application!

https://support.bluetechnix.at/wiki/Bluetechnix_%27Time_of_Flight%27_API#Reference_Manual

User Manual - Pxxx Linux Development Package Last change: 3 August 2015
 Version 3

© Bluetechnix 2015 Page 19 | 33

Let’s have a short look at the example: As stated earlier, we use OpenCL in the demo code to create a mask

from the amplitude data, in which all pixels with an amplitude higher than 300 get value 0xFFFF, and all other

pixels get 0x0000. The function call in the main source file is gpuCreateAmplitudeMask(). The function is

implemented in app/gpu_opencl_example.c.

 gpuInit(): OpenCL needs an initialization, which is implemented here. You can use this as a template

for each OpenCL program for the i.MX6Q. In the second part, the program is built just-in-time from

the OpenGL source, and a “kernel” is generated out of the program. We just use one kernel in the

example, but you can build several kernels with individual programs, i.e., functionality, of course.

This is only called once during program run.

 gpuKernelCode: This is the source code for the “kernel” that runs in the GPU. Its syntax is very much

identical to C. The kernel code is run once for each pixel. The example uses a 2D-Kernel, which

means, there is an X and and Y index. These indices can be accessed by the functions

o get_global_id(1): Y index for this kernel run

o get_global_id(0): X index for this kernel run

o get_global_size(1): Y total size

o get_global_size(0): X total size

We use it to calculate an index into the data array, after which we create the output mask:

size_t idx = get_global_id(1) * get_global_size(0) + get_global_id(0);

if (inAmp[idx] > threshold) {

 outMask[idx] = 0xffff;

} else {

 outMask[idx] = 0x0;

}

Note that in the kernel program’s parameter list, arrays (as the amplitude input array, or the output

mask array) are stated like C pointers with the keyword ‘global’):

global ushort* inAmp

whereas data that is static for each pixel/element of the array is declared as ‘const’ (as is our

threshold parameter):

const ushort threshold

 gpuCreateAmplitudeMask(): This function would be typically called on each frame in a real

application. It creates a buffer in GPU memory for output data:

gpuOutMask = clCreateBuffer(

 gpuContext, CL_MEM_WRITE_ONLY,

 sizeof(unsigned short) * xRes * yRes,

 NULL, NULL);

and assigns an argument of the kernel to it (in this case, argument no. 1, which is ‘outMask’):

ret = clSetKernelArg(gpuKernel, 1, sizeof(cl_mem), (void *)&gpuOutMask);

User Manual - Pxxx Linux Development Package Last change: 3 August 2015
 Version 3

© Bluetechnix 2015 Page 20 | 33

It allocates GPU memory for the input data and initializes it from the CPU memory afterwards, and

again associates this GPU memory with a kernel argument (this time no. 0). Also, the threshold

parameter is associated to kernel argument no. 2

Then, the calculation on the GPU is initiated. Note that the ‘workSizes’ array specifies the ranges for

the 2D kernel – in the example case, it is ‘xRes’ and ‘yRes’ which we got from the BTA library.

const size_t workSizes[2] = {xRes, yRes};

ret = clEnqueueNDRangeKernel(gpuCQ, gpuKernel, 2, NULL, workSizes, NULL, 0,

NULL, NULL);

The next call already waits until the calculation is finished and the output data is copied back to CPU

memory:

ret = clEnqueueReadBuffer(gpuCQ, gpuOutMask, CL_TRUE /* Block until read

finished */, 0, xRes * yRes * sizeof(unsigned short), outMask, 0, NULL,

NULL);

(Actually, the third argument states if the function should block until the data is copied, if it is set to

FALSE, the reading of the buffer is only enqueued.)

The rest of the function is only clean-up.

Please see chapter 12.1 for a short discussion of pros and cons of using the GPU, and for further reading.

7.5 NEON example

NEON is a set of SIMD instructions (single instruction, multiple data) that the Cortex-A9 cores are capable of.

Similar to the GPU, it is designed for fast operations on data arrays, as is common for typical image

processing.

Let’s start with a quick overview about NEON registers: The i.MX6Q Cortex-A9 cores feature 32 D-registers

that each are 64 bits wide (so, for example, we can load 4 16-bit amplitude values in one D register). D-

registers have numbers 0..31. There are also Q registers, which share the same register space, but are 128

bits wide. Every two D-registers form a Q register, so register Q0 consists of registers D0 and D1, register Q1

consists of registers D2 and D3, and so on. So, there are 16 Q register (0..15) in total.

The NEON demo code creates the same mask from the amplitude data as does the GPU demo code. It is

implemented in neon_example.c.

Let’s look at the example code quickly. Though there are C language intrinsics for many NEON instructions,

we prefer to write NEON assembly code. And so we do in the example.

 Per function call, the threshold is loaded once. In the loop that comes later, we calculate 16

values/pixels in one iteration. That’s why we create an array that contains the threshold 16 times,

and load this into D-registers 0..3. (4 D registers have 4x64 bits = 4x8 bytes = 32 bytes, and our

elements have 2 bytes each):

User Manual - Pxxx Linux Development Package Last change: 3 August 2015
 Version 3

© Bluetechnix 2015 Page 21 | 33

__asm__ volatile(

 /* These are NEON assembly instructions */

 "vld4.16 {d0, d1, d2, d3}, [%[thresIn]] \n"

 : /* output operands */

 : /* input operands */

 [thresIn] "r" (thresholdVec)

 : /* clobber list */

 "d0", "d1", "d2", "d3");

The rest is simply C99-syntax for inline assembly code. Note, we only READ the ‘thresIn’ array,

hence it is an ‘input operand’.

 What follows is a simple for-loop that runs (xRes * yRes / 16) times:

__asm__ volatile(

 "vld4.16 {d4, d5, d6, d7}, [%[ampIn]]! \n" /* load amplitude, each D-

reg is 64 bits wide, so we are loading 4*4=16 elements */

 "vcgt.u16 q4, q2, q0 \n" /* compare Q2 reg (=D4 and D5) to Q0 reg

(=D0 and D1) and store result in Q4 reg (=D8 and D9) */

 "vcgt.u16 q5, q3, q1 \n" /* do the same for other half of values */

 "vst4.16 {d8, d9, d10, d11}, [%[maskOut]]! \n" /* Store to memory */

 : /* output operands */

 [ampIn] "+r" (ampIn), /* Note, 'ampIn' is automatically incremented

by NEON instruction, so it is a read/write variable, which counts as output

operand! */

 [maskOut] "+r" (maskOut)

 : /* input operands */

 : /* clobber list */

 "d4", "d5", "d6", "d7", "d8", "d9", "d10", "d11", "memory");

The assembly code loads 16 amplitude values in D-registers 4 to 7. Then we use 2 ‘vcgt’ instructions

that compare the amplitude values to the threshold. Note, with these instructions, we use Q registers

as arguments, and hence operate on 8 elements per instruction. Finally, we write the NEON registers

to memory again – our mask is ready.

Note that both ‘ampIn’ and ‘maskOut’ are pointers that are automatically incremented after they are

addressed by ‘vld’ and ‘vst’ (load and store) instructions (because of the ‘!’ sign). It is required that

these are defined as output operands, because they are read AND written!

Please see chapter 12.2 for a short discussion of pros and cons of NEON, and for further reading.

User Manual - Pxxx Linux Development Package Last change: 3 August 2015
 Version 3

© Bluetechnix 2015 Page 22 | 33

8 Application Auto Start

All firmware of ToF devices are designed to look for a user application that should be started after the

device’s firmware boot is complete.

The entry point is a shell script. If it is present, it will be executed automatically.

/mnt/user/start_custom.sh

The developer package provides this configuration via a make command to easily enable or disable auto

start of the demo application:

make autostart_on

Copies file start_custom.sh from the development package to the target. On next ToF device reboot, the

application will be started after the firmware is up.

make autostart_off

Removes file start_custom.sh from the target. On a reboot, no user application is started.

User Manual - Pxxx Linux Development Package Last change: 3 August 2015
 Version 3

© Bluetechnix 2015 Page 23 | 33

9 Debugging

Since we are using a GNU toolchain, GDB is our debugger of choice.

The toolchain/ directory offers some more tools that can be useful for debugging, please see chapter 13 for

more documentation.

9.1 Installing Debug Tools on the Target

If you want to use any debugging feature that is described in the next chapters, you have to install the debug

tools on the target beforehand:

make debugtools_install

The debug utilities will be installed in the /mnt/user/debug-root/ directory on the target.

To remove the debug tools later, you may run

make debugtools_remove

9.2 Release vs. Debug Build

By default, the demo application will be built for debugging.

The kind of build is controlled by setting specific flags for compiler, linker, etc., in the CFLAGS environment

variable, which is defined at the top of the Makefile of the Pxxx Development Package.

Among others, the (by default inactive) release flags are:

Define the following for a release build

#CFLAGS += -O3 -DNDEBUG

which is optimization at level 3 (-O3), and disabling all assert()s in the code (-DNDEBUG).

The (by default active) debug flags are:

...or the define the following for a debug build (if you want to use a debugger

as GDB)

CFLAGS += -O0 -g

which is optimization at level 0 (-O0), and enabling symbol information in the object file (-g).

9.3 Running GDB on the Device

The simplest option to use GDB is its command-line interface on the Pxxx device itself.

Building and deploying the demo application is required beforehand:

make

make deploy

Log in to the ToF device via SSH afterwards, and start the GDB session with

User Manual - Pxxx Linux Development Package Last change: 3 August 2015
 Version 3

© Bluetechnix 2015 Page 24 | 33

cd /mnt/user

./run_app_gdb.sh

GNU gdb (Freescale MAD -- Linaro 2011.07 -- Built at 2011/08/10 09:20) 7.2-

2011.05-0

Copyright (C) 2010 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"

and "show warranty" for details.

This GDB was configured as "arm-fsl-linux-gnueabi".

For bug reporting instructions, please see:

<http://bugs.launchpad.net/gdb-linaro/>...

Reading symbols from /mnt/user/bta_eth_example...done.

(gdb)

Note that GDB reads symbols from the bta_eth_example ELF file, so you can set source-level breakpoints,

for example:

(gdb) break InfoEvent

Breakpoint 1 at 0x8e74: file app/bta_eth_example.c, line 31.

(gdb) run

Starting program: /mnt/user/bta_eth_example

…

9.4 Running Remote GDB Debug Session

The debug tools also contain the GDBSERVER application, which is a backend that controls the ‘inferior’,

i.e., the application that is debugged, and which is controlled via Ethernet from the work station. On your

development work station, you can then run the GDB command-line interface or any IDE debugger that is

capable of working with GDB (as for example, Eclipse with the C Development toolkit (CDT) – but this is our

of scope for this document).

To start such a remote debugging session, you may use the provided Makefile target:

make gdbstart

Note, for remote debugging, the application cannot be run by the ‘run’ command, but by a simple ‘c’

(continue) command.

Here is what it does in the background (you may use this information to set up a GUI debugging

environment):

 It starts GDBSERVER on the target – have a look at the run_app_gdbserver.sh script. The

GDBSERVER program needs an IP address and a port to listen for incoming connections – in our

case, it is “localhost:20000”, i.e., GDBSERVER listens on the target’s local port no. 20000.

User Manual - Pxxx Linux Development Package Last change: 3 August 2015
 Version 3

© Bluetechnix 2015 Page 25 | 33

 It starts GDB on the host and supplies the following command to GDB in order to connect to the

running GDBSERVER on the target:

o file app/bta_eth_example – to load symbol information

o target remote 192.168.0.10:20000 – to tell GDB that it’s inferior runs on a remote machine,

and where (adapt the IP address as needed) – IP address and port.

Note: It is recommended to use the GDB that is provided in the toolchain/ directory of the development

package. Its exact path is

toolchain/gcc-4.6.2-glibc-2.13-linaro-multilib-2011.12/fsl-linaro-

toolchain/bin/arm-fsl-linux-gnueabi-gdb

User Manual - Pxxx Linux Development Package Last change: 3 August 2015
 Version 3

© Bluetechnix 2015 Page 26 | 33

10 Logging

The example writes messages to the system log, as does each firmware of our ToF devices.

The system logger of the devices is already configured by the firmware.

The log is written to a persistent partition of the on-board flash and can be found in the files

/mnt/logs/messages*

The system logger automatically rotates the messages* files: messages is the newest (the one which is

currently written to), messages0 is the second-newest, messages9 is the oldest.

You may transfer all log information to the host by a simple scp copy:

scp user@192.168.0.10:/mnt/logs/messages* .

or you may view each messages file if you are logged onto the ToF device by e.g.

cat /mnt/logs/messages

If we do that after running the example, we see the following messages:

tail /mnt/logs/messages

May 15 11:11:16 sentis user.debug USERAPP: Callback: frameArrived FrameCounter

45816

May 15 11:11:16 sentis user.debug USERAPP: Callback: frameArrived FrameCounter

45817

May 15 11:11:16 sentis user.debug USERAPP: Callback: frameArrived FrameCounter

45818

May 15 11:11:16 sentis user.debug USERAPP: Callback: frameArrived FrameCounter

45819

May 15 11:11:16 sentis user.debug USERAPP: Callback: frameArrived FrameCounter

45820

May 15 11:11:16 sentis user.debug USERAPP: Callback: infoEvent (8) TCP control:

Connection closed

May 15 11:11:16 sentis user.debug USERAPP: Callback: infoEvent (8) UDP data:

Connection closed

May 15 11:11:16 sentis user.debug USERAPP: Callback: infoEvent (8)

ConnectionMonitorThread terminated

May 15 11:11:16 sentis user.info USERAPP: Quitting

You may filter all log files via the USERAPP keyword, which we specified at the initialization of the example

application (when opening the system log, see chapter 7.2):

grep USERAPP /mnt/logs/messages

All log messages are prefixed by the date and time of the event, in case the ToF device could successfully

synchronize its time with an NTP server. If the device has no connection to the Internet, time synchronization

fails, and log file dates usually start with Jan 1, 1970.

User Manual - Pxxx Linux Development Package Last change: 3 August 2015
 Version 3

© Bluetechnix 2015 Page 27 | 33

11 Additional Libraries

The development package comes with three libraries:

1. libbta_eth.so – The Bluetechnix ToF API Library for Ethernet Devices. It is automatically installed onto

the target if you use the ‘make deploy’ command.

2. libGAL.so – A library required for interfacing the GPU of the i.MX6Q. This library is already present in

the ToF device’s file system, and is not installed by a ‘make deploy’ command.

3. libOpenCL.so – A library required for using OpenCL of the i.MX6Q GPU. See libGAL.so.

In the case you need additional libraries for your development, you may put them into the lib/ folder of the

development package – this path is already configured to be searched by the linker.

Header files for the example are in the inc/ folder – this path also is configured to be searched by the

compiler, and you can of course add your own header files.

If you want to link with a library that is not present in the lib/ directory, but is already installed on the target

(have a look at /usr/lib/ on the target), we recommend you to copy the library from the target to the host.

Here is an example (we want to copy the pthread library):

scp user@192.168.0.10:/usr/lib/libpthread.so lib/

To add libraries that are not present on the target, we recommend you to use the Bluetechnix Linux Board

Support Package for the i.MX6, which the firmware of your ToF device is likely based on. There is exhaustive

documentation in our Support Wiki for how to build and configure this BSP, please see chapter 13.

Finally, you can compile every library using the provided toolchain. Don’t forget to add your libraries (that

must be installed on the target for program execution and dynamic linking) to the ‘make deploy’ command

(by editing the Makefile), or copy them manually (with scp).

User Manual - Pxxx Linux Development Package Last change: 3 August 2015
 Version 3

© Bluetechnix 2015 Page 28 | 33

12 Efficient Embedded Development

This chapter should give some advices on differences between powerful PC platforms and embedded

platforms and how to use embedded platforms efficiently.

The BltTofApi enables you generally to start with your development on a PC, then later cross-compile the

application with little effort and have it execute on the embedded platform.

However, there are options on the embedded i.MX6Q platform that may legitimate a partly different

implementation for the embedded target, if your application needs more performance than can be satisfied

by a multi-threaded C program.

12.1 Using the GPU/OpenCL

The i.MX6Q GPU features OpenCL 1.1 EP (Embedded Profile) support. OpenCL stands for “Open

Computing Language” and was designed to use the calculation power of Graphics Processing Units not for

rendering graphics, but for fast calculations.

The i.MX6Q GPU can execute several “kernels” (GPU programs) in parallel, which makes typical image

processing steps pretty fast. On the i.MX6Q, the GPU “owns” a part of system memory, which is not under

control of the Embedded Linux operating system, and was earlier explained as “GPU memory”.

As we have presented in the example code, input data to the GPU is uploaded to GPU memory before

execution, and the resulting data is then again downloaded into memory-managed Linux memory. Though

there are several memory access methods defined in OpenCL, we have found this approach to be the

fastest, assuming that data has to be manipulated on the ARM CPUs before and after calculations on the

GPU.

For the programmer, it means, that there is a trade-off in terms of execution times between the ARM Cortex-

A9 CPU and the GPU. The GPU is typically faster than the CPU, but additional time is required for up- and

download of the data to and from the GPU. A rule of thumb should therefore be: If you use the GPU, do as

much as possible on it. And a second: Do it in one run, don’t switch often between CPU and GPU (which

always requires copying buffers).

Let’s summarize:

+ GPU is fast

+ GPU instructions are complete – integer, math, geometric, image built-in functions

- GPU consumes much power

- GPU requires up- and download of data to/from dedicated GPU memory

The OpenCL API is pretty straight-forward. Amongst many tutorials that are available on the Internet, we

recommend the official OpenCL reference: https://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/

12.2 Using NEON SIMD Instructions

NEON is an additional instruction set of the Cortex-A9 cores in the i.MX6Q. These are all SIMD instructions –

a single instruction operates on multiple data. The implementation on the i.MX6Q features 32 D-registers

https://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/

User Manual - Pxxx Linux Development Package Last change: 3 August 2015
 Version 3

© Bluetechnix 2015 Page 29 | 33

(with 64 bits each). NEON instructions operate either on these or on the 128-bit Q-registers. Two D-registers

can always be accessed as one Q-register.

Compared to the GPU (OpenCL), data must be loaded into NEON registers, and then stored back to

memory, but this is faster than the memory copy which is required for the GPU. Another advantage is that

each of the four CPU cores has an own set of NEON registers, so NEON code can easily be used in a multi-

threaded program. Also, NEON instructions and ARM instructions can be mixed nearly without a

performance penalty.

+ NEON doesn’t require memory copy

+ NEON consumes less power than the GPU

+ NEON can easily be multi-threaded

+ NEON is faster than plain C code (ARM instruction set)

- NEON features only basic instructions, there are no math built-in functions

There is a good reference from the ARM website about the NEON instruction set:

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0489c/CJAJIIGG.html

For getting used to NEON, there is NEVADA – a web tool that let’s you graphically simulate NEON

instructions: http://szeged.github.io/nevada/

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0489c/CJAJIIGG.html
http://szeged.github.io/nevada/

User Manual - Pxxx Linux Development Package Last change: 3 August 2015
 Version 3

© Bluetechnix 2015 Page 30 | 33

13 Account Management

 Change default password for root
1. Log in via SSH, e.g., ssh root@192.168.0.10
2. Type passwd
3. Supply the new password for two times
4. Copy the file /etc/shadow (containing the encrypted passwords) to the non-volatile

settings partition, to be restored again on next reboot: cp /etc/shadow
/mnt/settings

 Change default password for user
1. Log in via SSH, e.g., ssh user@192.168.0.10
2. Type passwd
3. Supply the new password for two times
4. Copy the file /etc/shadow (containing the encrypted passwords) to the non-volatile

settings partition, to be restored again on next reboot: cp /etc/shadow
/mnt/settings

 Add a user
1. Log in via SSH, e.g., ssh root@192.168.0.10
2. Type adduser –h /mnt/user/anotheruser anotheruser (Since /mnt/user is

the only writable partition, you should create the user’s home directory there; Replace
‘anotheruser’ with your desired user name)

3. Supply the new password for two times
4. Copy the files /etc/shadow (containing the encrypted passwords) and

/etc/passwd (contains user list) to the non-volatile settings partition, to be restored
again on next reboot: cp /etc/shadow /etc/passwd /mnt/settings

User Manual - Pxxx Linux Development Package Last change: 3 August 2015
 Version 3

© Bluetechnix 2015 Page 31 | 33

14 Documentation Resources

Here is a summary of documentation resources that will be helpful for you during development.

 Hardware User Manual: Comes with each ToF device.

 Software User Manual: Comes with each ToF device. Contains complete register list for each device.

 Bluetechnix ToF API (BTA):

https://support.bluetechnix.at/wiki/Bluetechnix_%27Time_of_Flight%27_API#Reference_Manual

 Board Support Package of the Bluetechnix CM-i.MX6 System-on-Module (which is used in i.MX6-

based ToF devices from Bluetechnix):

https://support.bluetechnix.at/wiki/Linux_Software_User_Manual_%28i.MX6%29 (Use it to build

additional libraries!)

 “About GCC Linaro 4.6.2 Multilib Toolchain” – Document from Freescale (processor vendor) about

the toolchain which is part of the Pxxx Development Package. Has a short list of available debug

tools in chapter 3.2.

The document is provided in the Pxxx Development Package: doc/

about_gcc_linaro_4.6.2_multilib_toolchain.pdf

 GDB (GNU Debugger) Quick Reference Card: doc/gdb-refcard.pdf

 OpenCL 1.1 Reference Pages: https://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/

 OpenCL 1.1 Quick Reference Card: doc/opencl-1-1-quick-reference-card.pdf

 NEON reference:

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0489c/CJAJIIGG.html

 NEVADA, web NEON simulator: http://szeged.github.io/nevada/

 i.MX6 Quad Processor Data Sheet and Reference Manual can be downloaded from Freescale’s

website (registration required): http://www.freescale.com

https://support.bluetechnix.at/wiki/Bluetechnix_%27Time_of_Flight%27_API#Reference_Manual
https://support.bluetechnix.at/wiki/Linux_Software_User_Manual_%28i.MX6%29
https://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0489c/CJAJIIGG.html
http://szeged.github.io/nevada/
http://www.freescale.com/

User Manual - Pxxx Linux Development Package Last change: 3 August 2015
 Version 3

© Bluetechnix 2015 Page 32 | 33

15 History

15.1 Version Information

Version Date Changes

1.0.0 2015-05 (Initial release)
1.0.1 2015-05 Make example code aware of ToF device type

Table 15.1: Overview Pxxx Linux Development Package changes

15.2 Anomalies

Version Date Description

Table 15.2 – Anomalies

User Manual - Pxxx Linux Development Package Last change: 3 August 2015
 Version 3

© Bluetechnix 2015 Page 33 | 33

16 Document Revision History

Version Date Document Revision

1 2015-05-15 First release of the document
2 2015-05-27 Added release description for V1.0.1 to chapter 15.1

Supported firmware versions of ToF devices added
3 2015-08-03 Fixed wrong make command in chapter 9.1

Table 16.1: Document Revision history

	1 General Information
	1.1 Symbols Used
	1.2 Commands
	1.3 Code Excerpts
	1.4 Nomenclature

	2 Overview
	2.1 From PC to Embedded
	2.2 The Inner Life of a Bluetechnix ToF Device with Linux
	2.2.1 Flash Map
	2.2.2 Access
	2.2.3 Happy Development

	3 Prerequisites
	3.1 Work station
	3.1.1 Specific packages

	3.2 Pxxx Device

	4 Package Installation
	4.1 Unpacking
	4.2 Contents

	5 Connecting to the ToF Device
	5.1 Configuration and Test
	5.2 Setup SSH key-based Authentication

	6 Build and Run the Demo Application
	6.1 Build
	6.2 Run

	7 Demo Application
	7.1 Application sequence
	7.2 System Log
	7.3 ToF Device Access
	7.4 GPU/OpenCL
	7.5 NEON example

	8 Application Auto Start
	9 Debugging
	9.1 Installing Debug Tools on the Target
	9.2 Release vs. Debug Build
	9.3 Running GDB on the Device
	9.4 Running Remote GDB Debug Session

	10 Logging
	11 Additional Libraries
	12 Efficient Embedded Development
	12.1 Using the GPU/OpenCL
	12.2 Using NEON SIMD Instructions

	13 Account Management
	14 Documentation Resources
	15 History
	15.1 Version Information
	15.2 Anomalies

	16 Document Revision History

