

BLUETECHNIX Embedding Ideas

Argos3D-P220

Hardware User Manual

Version 1

Bluetechnix

Waidhausenstraße 3/19 A-1140 Vienna AUSTRIA

office@bluetechnix.com www.bluetechnix.com

Argos3D-P220 - Hardware User Manual

Document No.: 900-308 / A

Publication date: December 22, 2016

Subject to change without notice. Errors excepted.

This document is protected by copyright. All rights reserved. No part of this document may be reproduced or transmitted for any purpose in any form or by any means, electronically or mechanically, without expressly written permission by Bluetechnix GmbH.

Table of Contents

1	Ge	neral	Information	6
	1.1	Syn	nbols Used	6
	1.2	Cer	tification	6
2	Arg	jos3E	D-P220 Components	7
3	Me	chan	ical Description	8
	3.1	Dim	nensions	8
	3.1	.1	Mounting Panel	9
	3.1	.2	Mount Spacing	9
	3.2	Len	is and focus	10
4	Inte	erface	e Description	11
	4.1	Sig	nal naming	11
	4.2	Cor	nnector Numbering	11
	4.2	.1	Connector description	11
	4.2	.2	Power supply	12
	4.2	.3	DIO	12
	4.2	.4	Trigger In	12
	4.2	.5	RS485 Mounting Option	12
	4.3	Mat	ting Parts	13
5	So	ftware	e	14
	5.1	Firn	nware	14
	5.2	Der	no Application	14
	5.3	Get	ting Started Software Development Example	14
6	Ap	pend	ix	15
	6.1	Ope	erating Conditions	15
	6.1	.1	Input current	15
	6.2	Opt	tical Characteristics	15
	6.3	Mea	asurement Specifications	16
	6.3	.1	Measurement Environmental Conditions	16
	6.3	.2	Typical Reproducibility	16
	6.3	.3	Typical Integration Time	16
	6.3	.4	Typical Range	17
	6.3	.5	Accuracy of Distances	17
	6.4	Env	rironmental considerations	17
	6.4	.1	Temperature at the case	17
	6.4	.2	Integration Time vs. Frame-rate	18
	6.5	Sen	nsor Location	18

7	Sup	port	19
	7.1.	1 General Support	19
7	.2	Software Packages	19
7	.3	Related Products	19
8	Pro	duct History	20
8	.1	Version Information	20
	8.1.	1 Argos3D-P320/P321	20
8	.2	Anomalies	20
8	.3	Document Revision History	20

© Bluetechnix GmbH 2016

All Rights Reserved.

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights of technical change reserved.

We hereby disclaim any warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Bluetechnix makes and you receive no warranties or conditions, express, implied, statutory or in any communication with you. Bluetechnix specifically disclaims any implied warranty of merchantability or fitness for a particular purpose.

Bluetechnix takes no liability for any damages and errors causing of the usage of this board. The user of this board is responsible by himself for the functionality of his application. He is allowed to use the board only if he has the qualification. More information is found in the General Terms and Conditions (AGB).

Information

For further information on technology, delivery terms and conditions and prices please contact Bluetechnix (http://www.bluetechnix.com).

Warning

Due to technical requirements components may contain dangerous substances.

Last change: 22 December 2016 Version 1

1 General Information

This guide applies to the Argos3D-P320/P321 camera platform from Bluetechnix GmbH. Follow this guide chapter by chapter to set up and understand your product. If a section of this document only applies to certain camera parts, this is indicated at the beginning of the respective section.

The document applies to X-Grade product from V1.0.

1.1 Symbols Used

This guide makes use of a few symbols and conventions:

Warning

Indicates a situation which, if not avoided, could result in minor or moderate injury and/or property damage or damage to the device.

Caution

Indicates a situation which, if not avoided, may result in minor damage to the device, in malfunction of the device or in data loss.

Note

Notes provide information on special issues related to the device or provide information that will make operation of the device easier.

Procedures

A procedure always starts with a headline

1. The number indicates the step number of a certain procedure you are expected to follow. Steps are numbered sequentially.

This sign ➤ indicates an expected result of your action.

References

 $\stackrel{\text{\tiny W}}{\to}$ This symbol indicates a cross reference to a different chapter of this manual or to an external document.

1.2 Certification

X-Grade Version

X-Grade version of the products are not intended for sale and have therefore no certifications. The user is responsible for a correct usage in order with federal laws.

Last change: 22 December 2016 Version 1

2 Argos3D-P220 Components

Figure 2-1 Argos3D-P220 components

- a. Case
- b. Cover plate
- c. Viewing window for 3D sensor
- d. Viewing window for illumination module
- e. IP67 compliant connector

Last change: 22 December 2016 Version 1

3 Mechanical Description

3.1 Dimensions

Figure 3-2: Case and connector nuts

Last change: 22 December 2016

3.1.1 Mounting Panel

The following panel cutout is designed to insert the Argos3D-P220 on the front side, and to fasten it by using four M4 screws with nuts. If the device will be mounted by using self-cutting screws, the four mounting holes must be smaller.

3.1.2 Mount Spacing

Caution

Case may become hot! The user is responsible to take care for an appropriate cooling.

To prevent the Argos3D-P220 from overheating, it is strongly recommended, to keep away nearby objects. This guarantees a constant airflow for proper cooling. This bounding box may be violated, when other cooling techniques are provided.

Figure 3-5: Bounding box

- a. Argos3D-P220 Case
- b. Argos3D-P220 Cover plate
- c. Mating PI67 connector
- d. Wall or mounting panel

3.2 Lens and focus

- FoV: 90° horizontal, 67° vertical

Last change: 22 December 2016 Version 1

4 Interface Description

4.1 Signal naming

Signal names are usually written in capital letters. They are noted in positive logic (positive asserted). If the signal is negative asserted an "n" will be added as prefix to the signal name.

Type:

The type describes the electrical characteristics of the signal. The following types are available:

- I Input
- O Output
- DN Negative Differential I/O
- DP Positive Differential I/O
- P Power supply
- 3.3V TTL TTL compatible signal with 3.3V high level and 0V low level.
- 50V tolerant Accepts input voltage levels up to 50V (2.5V high voltage threshold)

4.2 Connector Numbering

4.2.1 Connector description

No.	Signal	Туре	Description
1	ETH-B_N	DN	Ethernet Lane B
2	ETH-B_P	DP	Ethernet Lane B
3	GND	Р	DIO Reference Ground
4	DIO	IO (50V tolerant)	Digital I/O Signal
5	V+	Р	Positive Power Supply
6	ETH-C_N	DN	Ethernet Lane C

No.	Signal	Туре	Description	
7	ETH-C_P	DP	Ethernet Lane C	
8	ETH-D_N	DN	Ethernet Lane D	
9	ETH-D_P	DP	Ethernet Lane D	
10	nTRIGGER	IO (3V3 TTL)	Trigger Input	
11	ETH-A_N	DN	Ethernet Lane A	
12	ETH-A_P	DP	Ethernet Lane A	
13	GND	Р	DI Reference Ground	
14	DI	I (50V tolerant)	Digital Input Gignal	
15	V-	Р	Power Ground	

Table 4-1: Connector Description

4.2.2 Power supply

The power supply pins are protected against wrong polarity.

Voltage range: 16V to 52V.

Note

Use inherently limited power sources only!

4.2.3 DIO

The digital Input-Output interface has an optical isolated input and output stage. Driven by the GPIOs 1 (output) and GPIO 3 (input). See TIM-uP-19kS3 specifications for GPIO functionality.

The output stage is a solid state relais, and gives the possibility to use the output as a simple switcher. The current is limited to 200mA.

If this interface is used as input, the corresponding output must be set to logically 0. Otherwise the input is constantly shorted. The maximum LOW input detection voltage is 2V, the minimum HIGH input detection volte is 5V.

4.2.4 Trigger In

The trigger Input is not optically isolated to minimize the propagation delay. But the input is protected against 50V clamp voltages. A standard 3.3V TTL signal should be used.

4.2.5 RS485 Mounting Option

For some Applications a RS485 communication could be needed. Therefore the internal hardware could be modified to route the RS485-A and –B signals to the connector in state of DI (RS485-A) and DIGND (RS485-A).

Ask BECOM Bluetechnix for custom modifications.

Last change: 22 December 2016 Version 1

4.3 Mating Parts

The mating IP67 connector is an A-HDS15-HOOD-WP from ASSMANN WSW components GmbH and available for purchase e.g. at Digi-Key.

For development purposes there is an adapter available with standard Ethernet RJ45 interface and a 2.1mm DC power supply socket.

Figure 4-2: Adapter for P2xx

Last change: 22 December 2016 Version 1

5 Software

5.1 Firmware

For a description of the firmware related interfaces, protocol descriptions, register settings, etc. please refer to the Software User Manual.

For X-Grade Types please refer to the software user manual of the TIM-UP-19k-S3-ETH

5.2 Demo Application

For the first evaluation of the camera and to evaluate different settings and configurations a .NET demo application for Microsoft Windows is provided: BLT-ToF-Suite. The demo application can be downloaded from our support web site support.bluetechnix.com.

5.3 Getting Started Software Development Example

To facilitate the integration of the Argos module in your own application a getting started example will be available on our download site. Please refer to our support site support.bluetechnix.com.

Last change: 22 December 2016 Version 1

6 Appendix

6.1 Operating Conditions

Symbol	Parameter	Min	Typical	Max	Unit
V _{IN}	Input supply voltage	16	24	52	V
I _{IN}	Input current ¹⁾	TBD	TBD ¹⁾	TBD	mA
	Input current without Interface-Board ¹⁾	TBD	TBD	TBD	mA
	Input current (Mainboard only) ³⁾	TBD	TBD	TBD	mA
Т	Operating Temperature ²⁾	TBD		TBD ²⁾	°C
Т	Storage Temperature	-40		+125	°C
FITP ⁴⁾	Frame-rate Integration Time Product			TBD	

Table 6-1: Operating Conditions

1) Note

Valid for a frame-rate of 40fps and an integration time of 1500µs. The input current depends on the applied frame-rate and integration time.

2) Note

The maximum operating temperature depends on the frame-rate and integration time.

6.1.1 Input current

The input current depends on the selected frame-rate (fps) and the integration time (t_{INT}). The following figure shows typical values. The values for the x axis shows the FITP which has been calculated with the following equation:

$$FITP = t_{INT} \ [ms] \cdot fps \ \left[\frac{1}{s}\right] \cdot 4$$

TBD

Figure 6-1: Input power depending on frame-rate integration time product

6.2 **Optical Characteristics**

Symbol	Parameter	Min	Typical	Max	Unit
#LEDs	Nr. of LEDs		6		
A CENTROID	Centroid-Wavelength of Illumination		850		nm
Δλ	Spectral Bandwidth		30		nm
le	Radiant intensity		TBD		W/sr
FoV _H	Horizontal Field of View		90		Deg
FoVv	Vertical Field of View		67		Deg

Last change: 22 December 2016 Version 1

6.3 Measurement Specifications

6.3.1 Measurement Environmental Conditions

All the following measurements have been acquired at the following constant environmental conditions.

Parameter	Value
Temperature	23 °C
Humidity	35 %
Ambient light	2 kLux
Modulation Frequency	20 MHz
Frame-rate	25 fps

Table 6-2: Environmental Specification

6.3.2 Typical Reproducibility

TBD

The following table shows the standard deviation over 100 samples.

Measuring range [mm]	White target (90%) [mm]	Integration time [ms]	Gray target (18%) [mm]	Integration time [ms]
100	TBD		TBD	
300	TBD		TBD	
500	TBD		TBD	
700	TBD		TBD	
900	TBD		TBD	
1100	TBD		TBD	
1300	TBD		TBD	
1500	TBD		TBD	
1700	TBD		TBD	
1900	TBD		TBD	
2100	TBD		TBD	
2300	TBD		TBD	
2500	TBD		TBD	
2700	TBD		TBD	
2900	TBD		TBD	

Table 6-3: Typical Reproducibility

6.3.3 Typical Integration Time

Measuring range [mm]	Integration time for white target (90%) [ms]	Integration time for gray target (18%) [ms]
500	TBD	TBD
1000	TBD	TBD
1500	TBD	TBD
2000	TBD	TBD
2500	TBD	TBD
3000	TBD	TBD

Table 6-4: Typical Integration Time

6.3.4 Typical Range

Integration time [ms]	Minimum distance for white target (90%) [mm]	Maximum distance for white target (90%) [mm]	Minimum distance for gray target (18%) [mm]	Maximum distance for gray target (18%) [mm]
TBD				

Table 6-5: Typical Range

6.3.5 Accuracy of Distances

TBD

The following table has been determined by calibrating the device at a distance of 1500mm and an integration time of 1,5ms. For applications with specific environment optimized calibration may improve the error results.

Measuring range [mm]	White target (90%) [mm]	Integration time [ms]	Gray target (18%) [mm]	Integration time [ms]
500	TBD		TBD	
1000	TBD		TBD	
1500	TBD		TBD	
2000	TBD		TBD	
2500	TBD		TBD	
3000	TBD		TBD	

Table 6-6: Accuracy of Distances

6.4 Environmental considerations

TBD

6.4.1 Temperature at the case

The following figure shows the expected case temperature depending on the frame-rate integration time product (FITP) and the ambient temperature. The FITP has been calculated as follow:

$$FITP = t_{INT} \ [ms] \cdot fps \ \left[\frac{1}{s}\right] \cdot 4$$

TBD

Figure 6-2: Expected cooling plate temperature depending on frame-rate integration time product

The temperature on the cooling plate can be reduced by mounting an additional heat sink on the cooling plate.

Last change: 22 December 2016

Version 1

6.4.2 Integration Time vs. Frame-rate

The following table shows recommended frame-rate integration time combinations depending on the ambient temperature.

Caution

Be careful to not stress the device beyond the limits, otherwise you may damage the device.

TBD

Figure 6-3: Integration time vs. frame-rate

The diagram takes care to limit the FITP in a way that the temperature on the cooling plate doesn't exceed 70°C. Using an appropriate heat sink higher values of the FITP may be applied.

Caution

The user is responsible to take care for an appropriate cooling if the Sentis is mounted into a case.

6.5 Sensor Location

TBD

Last change: 22 December 2016 Version 1

7 Support

7.1.1 General Support

General support for products can be found at Bluetechnix' support site

Support Link

https://support.bluetechnix.at/wiki/

7.2 Software Packages

Software packages and software downloads are for registered customers only

Software Package

https://support.bluetechnix.at/software/

7.3 Related Products

- TIM^{uP}-19kS3-ETH
- LIM^U-LED-850

Last change: 22 December 2016 Version 1

8 Product History

8.1 Version Information

8.1.1 Argos3D-P320/P321

Note

Product	Version	Release date
Argos3D-P220	X-Grade	December 2016

Table 8-1: Overview Argos3D-P220 product changes

Please refer to our support site for additional information about product changes.

8.2 Anomalies

Applies to	Date	Description
V1.0.0		No anomalies reported yet.

Table 8-2 – Product anomalies

8.3 Document Revision History

Version	Date	Document Revision
1	2016 12 22	First preliminary of the document

Table 8-3: Revision history